# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for BERT pretrainer model.""" import itertools from absl.testing import parameterized import tensorflow as tf, tf_keras from official.nlp.modeling import layers from official.nlp.modeling import networks from official.nlp.modeling.models import bert_pretrainer class BertPretrainerTest(tf.test.TestCase, parameterized.TestCase): def test_bert_pretrainer(self): """Validate that the Keras object can be created.""" # Build a transformer network to use within the BERT trainer. vocab_size = 100 sequence_length = 512 test_network = networks.BertEncoder( vocab_size=vocab_size, num_layers=2, max_sequence_length=sequence_length) # Create a BERT trainer with the created network. num_classes = 3 num_token_predictions = 2 bert_trainer_model = bert_pretrainer.BertPretrainer( test_network, num_classes=num_classes, num_token_predictions=num_token_predictions) # Create a set of 2-dimensional inputs (the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) masked_lm_positions = tf_keras.Input( shape=(num_token_predictions,), dtype=tf.int32) # Invoke the trainer model on the inputs. This causes the layer to be built. outputs = bert_trainer_model( [word_ids, mask, type_ids, masked_lm_positions]) # Validate that the outputs are of the expected shape. expected_lm_shape = [None, num_token_predictions, vocab_size] expected_classification_shape = [None, num_classes] self.assertAllEqual(expected_lm_shape, outputs['masked_lm'].shape.as_list()) self.assertAllEqual(expected_classification_shape, outputs['classification'].shape.as_list()) def test_bert_trainer_tensor_call(self): """Validate that the Keras object can be invoked.""" # Build a transformer network to use within the BERT trainer. test_network = networks.BertEncoder(vocab_size=100, num_layers=2) # Create a BERT trainer with the created network. bert_trainer_model = bert_pretrainer.BertPretrainer( test_network, num_classes=2, num_token_predictions=2) # Create a set of 2-dimensional data tensors to feed into the model. word_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32) mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32) type_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32) lm_mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32) # Invoke the trainer model on the tensors. In Eager mode, this does the # actual calculation. (We can't validate the outputs, since the network is # too complex: this simply ensures we're not hitting runtime errors.) _ = bert_trainer_model([word_ids, mask, type_ids, lm_mask]) def test_serialize_deserialize(self): """Validate that the BERT trainer can be serialized and deserialized.""" # Build a transformer network to use within the BERT trainer. (Here, we use # a short sequence_length for convenience.) test_network = networks.BertEncoder( vocab_size=100, num_layers=2, max_sequence_length=5) # Create a BERT trainer with the created network. (Note that all the args # are different, so we can catch any serialization mismatches.) bert_trainer_model = bert_pretrainer.BertPretrainer( test_network, num_classes=4, num_token_predictions=3) # Create another BERT trainer via serialization and deserialization. config = bert_trainer_model.get_config() new_bert_trainer_model = bert_pretrainer.BertPretrainer.from_config(config) # Validate that the config can be forced to JSON. _ = new_bert_trainer_model.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(bert_trainer_model.get_config(), new_bert_trainer_model.get_config()) class BertPretrainerV2Test(tf.test.TestCase, parameterized.TestCase): @parameterized.parameters(itertools.product( (False, True), (False, True), (False, True), (False, True), )) def test_bert_pretrainerv2(self, dict_outputs, return_all_encoder_outputs, use_customized_masked_lm, has_masked_lm_positions): """Validate that the Keras object can be created.""" # Build a transformer network to use within the BERT trainer. del dict_outputs, return_all_encoder_outputs vocab_size = 100 sequence_length = 512 hidden_size = 48 num_layers = 2 test_network = networks.BertEncoderV2( vocab_size=vocab_size, num_layers=num_layers, hidden_size=hidden_size, max_sequence_length=sequence_length) _ = test_network(test_network.inputs) # Create a BERT trainer with the created network. if use_customized_masked_lm: customized_masked_lm = layers.MaskedLM( embedding_table=test_network.get_embedding_table()) else: customized_masked_lm = None bert_trainer_model = bert_pretrainer.BertPretrainerV2( encoder_network=test_network, customized_masked_lm=customized_masked_lm) num_token_predictions = 20 # Create a set of 2-dimensional inputs (the first dimension is implicit). inputs = dict( input_word_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32), input_mask=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32), input_type_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)) if has_masked_lm_positions: inputs['masked_lm_positions'] = tf_keras.Input( shape=(num_token_predictions,), dtype=tf.int32) # Invoke the trainer model on the inputs. This causes the layer to be built. outputs = bert_trainer_model(inputs) has_encoder_outputs = True # dict_outputs or return_all_encoder_outputs expected_keys = ['sequence_output', 'pooled_output'] if has_encoder_outputs: expected_keys.append('encoder_outputs') if has_masked_lm_positions: expected_keys.append('mlm_logits') self.assertSameElements(outputs.keys(), expected_keys) # Validate that the outputs are of the expected shape. expected_lm_shape = [None, num_token_predictions, vocab_size] if has_masked_lm_positions: self.assertAllEqual(expected_lm_shape, outputs['mlm_logits'].shape.as_list()) expected_sequence_output_shape = [None, sequence_length, hidden_size] self.assertAllEqual(expected_sequence_output_shape, outputs['sequence_output'].shape.as_list()) expected_pooled_output_shape = [None, hidden_size] self.assertAllEqual(expected_pooled_output_shape, outputs['pooled_output'].shape.as_list()) def test_multiple_cls_outputs(self): """Validate that the Keras object can be created.""" # Build a transformer network to use within the BERT trainer. vocab_size = 100 sequence_length = 512 hidden_size = 48 num_layers = 2 test_network = networks.BertEncoderV2( vocab_size=vocab_size, num_layers=num_layers, hidden_size=hidden_size, max_sequence_length=sequence_length) bert_trainer_model = bert_pretrainer.BertPretrainerV2( encoder_network=test_network, classification_heads=[layers.MultiClsHeads( inner_dim=5, cls_list=[('foo', 2), ('bar', 3)])]) num_token_predictions = 20 # Create a set of 2-dimensional inputs (the first dimension is implicit). inputs = dict( input_word_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32), input_mask=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32), input_type_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32), masked_lm_positions=tf_keras.Input( shape=(num_token_predictions,), dtype=tf.int32)) # Invoke the trainer model on the inputs. This causes the layer to be built. outputs = bert_trainer_model(inputs) self.assertEqual(outputs['foo'].shape.as_list(), [None, 2]) self.assertEqual(outputs['bar'].shape.as_list(), [None, 3]) def test_v2_serialize_deserialize(self): """Validate that the BERT trainer can be serialized and deserialized.""" # Build a transformer network to use within the BERT trainer. test_network = networks.BertEncoderV2(vocab_size=100, num_layers=2) # Create a BERT trainer with the created network. (Note that all the args # are different, so we can catch any serialization mismatches.) bert_trainer_model = bert_pretrainer.BertPretrainerV2( encoder_network=test_network) # Create another BERT trainer via serialization and deserialization. config = bert_trainer_model.get_config() new_bert_trainer_model = bert_pretrainer.BertPretrainerV2.from_config( config) # Validate that the config can be forced to JSON. _ = new_bert_trainer_model.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(bert_trainer_model.get_config(), new_bert_trainer_model.get_config()) if __name__ == '__main__': tf.test.main()