# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluation of SQuAD predictions (version 1.1). The functions are copied from https://worksheets.codalab.org/rest/bundles/0xbcd57bee090b421c982906709c8c27e1/contents/blob/. The SQuAD dataset is described in this paper: SQuAD: 100,000+ Questions for Machine Comprehension of Text Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, Percy Liang https://nlp.stanford.edu/pubs/rajpurkar2016squad.pdf """ import collections import re import string # pylint: disable=g-bad-import-order from absl import logging # pylint: enable=g-bad-import-order def _normalize_answer(s): """Lowers text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def _f1_score(prediction, ground_truth): """Computes F1 score by comparing prediction to ground truth.""" prediction_tokens = _normalize_answer(prediction).split() ground_truth_tokens = _normalize_answer(ground_truth).split() prediction_counter = collections.Counter(prediction_tokens) ground_truth_counter = collections.Counter(ground_truth_tokens) common = prediction_counter & ground_truth_counter num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def _exact_match_score(prediction, ground_truth): """Checks if predicted answer exactly matches ground truth answer.""" return _normalize_answer(prediction) == _normalize_answer(ground_truth) def _metric_max_over_ground_truths(metric_fn, prediction, ground_truths): """Computes the max over all metric scores.""" scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): """Evaluates predictions for a dataset.""" f1 = exact_match = total = 0 for article in dataset: for paragraph in article["paragraphs"]: for qa in paragraph["qas"]: total += 1 if qa["id"] not in predictions: message = "Unanswered question " + qa["id"] + " will receive score 0." logging.error(message) continue ground_truths = [entry["text"] for entry in qa["answers"]] prediction = predictions[qa["id"]] exact_match += _metric_max_over_ground_truths(_exact_match_score, prediction, ground_truths) f1 += _metric_max_over_ground_truths(_f1_score, prediction, ground_truths) exact_match = exact_match / total f1 = f1 / total return {"exact_match": exact_match, "final_f1": f1}