# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A converter from a tf1 ALBERT encoder checkpoint to a tf2 encoder checkpoint. The conversion will yield an object-oriented checkpoint that can be used to restore an AlbertEncoder object. """ import os from absl import app from absl import flags import tensorflow as tf, tf_keras from official.legacy.albert import configs from official.modeling import tf_utils from official.nlp.modeling import models from official.nlp.modeling import networks from official.nlp.tools import tf1_bert_checkpoint_converter_lib FLAGS = flags.FLAGS flags.DEFINE_string("albert_config_file", None, "Albert configuration file to define core bert layers.") flags.DEFINE_string( "checkpoint_to_convert", None, "Initial checkpoint from a pretrained BERT model core (that is, only the " "BertModel, with no task heads.)") flags.DEFINE_string("converted_checkpoint_path", None, "Name for the created object-based V2 checkpoint.") flags.DEFINE_string("checkpoint_model_name", "encoder", "The name of the model when saving the checkpoint, i.e., " "the checkpoint will be saved using: " "tf.train.Checkpoint(FLAGS.checkpoint_model_name=model).") flags.DEFINE_enum( "converted_model", "encoder", ["encoder", "pretrainer"], "Whether to convert the checkpoint to a `AlbertEncoder` model or a " "`BertPretrainerV2` model (with mlm but without classification heads).") ALBERT_NAME_REPLACEMENTS = ( ("bert/encoder/", ""), ("bert/", ""), ("embeddings/word_embeddings", "word_embeddings/embeddings"), ("embeddings/position_embeddings", "position_embedding/embeddings"), ("embeddings/token_type_embeddings", "type_embeddings/embeddings"), ("embeddings/LayerNorm", "embeddings/layer_norm"), ("embedding_hidden_mapping_in", "embedding_projection"), ("group_0/inner_group_0/", ""), ("attention_1/self", "self_attention"), ("attention_1/output/dense", "self_attention/attention_output"), ("transformer/LayerNorm/", "transformer/self_attention_layer_norm/"), ("ffn_1/intermediate/dense", "intermediate"), ("ffn_1/intermediate/output/dense", "output"), ("transformer/LayerNorm_1/", "transformer/output_layer_norm/"), ("pooler/dense", "pooler_transform"), ("cls/predictions", "bert/cls/predictions"), ("cls/predictions/output_bias", "cls/predictions/output_bias/bias"), ("cls/seq_relationship/output_bias", "predictions/transform/logits/bias"), ("cls/seq_relationship/output_weights", "predictions/transform/logits/kernel"), ) def _create_albert_model(cfg): """Creates an ALBERT keras core model from BERT configuration. Args: cfg: A `AlbertConfig` to create the core model. Returns: A keras model. """ albert_encoder = networks.AlbertEncoder( vocab_size=cfg.vocab_size, hidden_size=cfg.hidden_size, embedding_width=cfg.embedding_size, num_layers=cfg.num_hidden_layers, num_attention_heads=cfg.num_attention_heads, intermediate_size=cfg.intermediate_size, activation=tf_utils.get_activation(cfg.hidden_act), dropout_rate=cfg.hidden_dropout_prob, attention_dropout_rate=cfg.attention_probs_dropout_prob, max_sequence_length=cfg.max_position_embeddings, type_vocab_size=cfg.type_vocab_size, initializer=tf_keras.initializers.TruncatedNormal( stddev=cfg.initializer_range)) return albert_encoder def _create_pretrainer_model(cfg): """Creates a pretrainer with AlbertEncoder from ALBERT configuration. Args: cfg: A `BertConfig` to create the core model. Returns: A BertPretrainerV2 model. """ albert_encoder = _create_albert_model(cfg) pretrainer = models.BertPretrainerV2( encoder_network=albert_encoder, mlm_activation=tf_utils.get_activation(cfg.hidden_act), mlm_initializer=tf_keras.initializers.TruncatedNormal( stddev=cfg.initializer_range)) # Makes sure masked_lm layer's variables in pretrainer are created. _ = pretrainer(pretrainer.inputs) return pretrainer def convert_checkpoint(bert_config, output_path, v1_checkpoint, checkpoint_model_name, converted_model="encoder"): """Converts a V1 checkpoint into an OO V2 checkpoint.""" output_dir, _ = os.path.split(output_path) # Create a temporary V1 name-converted checkpoint in the output directory. temporary_checkpoint_dir = os.path.join(output_dir, "temp_v1") temporary_checkpoint = os.path.join(temporary_checkpoint_dir, "ckpt") tf1_bert_checkpoint_converter_lib.convert( checkpoint_from_path=v1_checkpoint, checkpoint_to_path=temporary_checkpoint, num_heads=bert_config.num_attention_heads, name_replacements=ALBERT_NAME_REPLACEMENTS, permutations=tf1_bert_checkpoint_converter_lib.BERT_V2_PERMUTATIONS, exclude_patterns=["adam", "Adam"]) # Create a V2 checkpoint from the temporary checkpoint. if converted_model == "encoder": model = _create_albert_model(bert_config) elif converted_model == "pretrainer": model = _create_pretrainer_model(bert_config) else: raise ValueError("Unsupported converted_model: %s" % converted_model) tf1_bert_checkpoint_converter_lib.create_v2_checkpoint( model, temporary_checkpoint, output_path, checkpoint_model_name) # Clean up the temporary checkpoint, if it exists. try: tf.io.gfile.rmtree(temporary_checkpoint_dir) except tf.errors.OpError: # If it doesn't exist, we don't need to clean it up; continue. pass def main(_): output_path = FLAGS.converted_checkpoint_path v1_checkpoint = FLAGS.checkpoint_to_convert checkpoint_model_name = FLAGS.checkpoint_model_name converted_model = FLAGS.converted_model albert_config = configs.AlbertConfig.from_json_file(FLAGS.albert_config_file) convert_checkpoint(albert_config, output_path, v1_checkpoint, checkpoint_model_name, converted_model=converted_model) if __name__ == "__main__": app.run(main)