# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A converter from a V1 BERT encoder checkpoint to a V2 encoder checkpoint. The conversion will yield an object-oriented checkpoint that can be used to restore a BertEncoder or BertPretrainerV2 object (see the `converted_model` FLAG below). """ import os from absl import app from absl import flags import tensorflow as tf, tf_keras from official.legacy.bert import configs from official.modeling import tf_utils from official.nlp.modeling import models from official.nlp.modeling import networks from official.nlp.tools import tf1_bert_checkpoint_converter_lib FLAGS = flags.FLAGS flags.DEFINE_string("bert_config_file", None, "Bert configuration file to define core bert layers.") flags.DEFINE_string( "checkpoint_to_convert", None, "Initial checkpoint from a pretrained BERT model core (that is, only the " "BertModel, with no task heads.)") flags.DEFINE_string("converted_checkpoint_path", None, "Name for the created object-based V2 checkpoint.") flags.DEFINE_string("checkpoint_model_name", "encoder", "The name of the model when saving the checkpoint, i.e., " "the checkpoint will be saved using: " "tf.train.Checkpoint(FLAGS.checkpoint_model_name=model).") flags.DEFINE_enum( "converted_model", "encoder", ["encoder", "pretrainer"], "Whether to convert the checkpoint to a `BertEncoder` model or a " "`BertPretrainerV2` model (with mlm but without classification heads).") def _create_bert_model(cfg): """Creates a BERT keras core model from BERT configuration. Args: cfg: A `BertConfig` to create the core model. Returns: A BertEncoder network. """ bert_encoder = networks.BertEncoder( vocab_size=cfg.vocab_size, hidden_size=cfg.hidden_size, num_layers=cfg.num_hidden_layers, num_attention_heads=cfg.num_attention_heads, intermediate_size=cfg.intermediate_size, activation=tf_utils.get_activation(cfg.hidden_act), dropout_rate=cfg.hidden_dropout_prob, attention_dropout_rate=cfg.attention_probs_dropout_prob, max_sequence_length=cfg.max_position_embeddings, type_vocab_size=cfg.type_vocab_size, initializer=tf_keras.initializers.TruncatedNormal( stddev=cfg.initializer_range), embedding_width=cfg.embedding_size) return bert_encoder def _create_bert_pretrainer_model(cfg): """Creates a BERT keras core model from BERT configuration. Args: cfg: A `BertConfig` to create the core model. Returns: A BertPretrainerV2 model. """ bert_encoder = _create_bert_model(cfg) pretrainer = models.BertPretrainerV2( encoder_network=bert_encoder, mlm_activation=tf_utils.get_activation(cfg.hidden_act), mlm_initializer=tf_keras.initializers.TruncatedNormal( stddev=cfg.initializer_range)) # Makes sure the pretrainer variables are created. _ = pretrainer(pretrainer.inputs) return pretrainer def convert_checkpoint(bert_config, output_path, v1_checkpoint, checkpoint_model_name="model", converted_model="encoder"): """Converts a V1 checkpoint into an OO V2 checkpoint.""" output_dir, _ = os.path.split(output_path) tf.io.gfile.makedirs(output_dir) # Create a temporary V1 name-converted checkpoint in the output directory. temporary_checkpoint_dir = os.path.join(output_dir, "temp_v1") temporary_checkpoint = os.path.join(temporary_checkpoint_dir, "ckpt") tf1_bert_checkpoint_converter_lib.convert( checkpoint_from_path=v1_checkpoint, checkpoint_to_path=temporary_checkpoint, num_heads=bert_config.num_attention_heads, name_replacements=( tf1_bert_checkpoint_converter_lib.BERT_V2_NAME_REPLACEMENTS), permutations=tf1_bert_checkpoint_converter_lib.BERT_V2_PERMUTATIONS, exclude_patterns=["adam", "Adam"]) if converted_model == "encoder": model = _create_bert_model(bert_config) elif converted_model == "pretrainer": model = _create_bert_pretrainer_model(bert_config) else: raise ValueError("Unsupported converted_model: %s" % converted_model) # Create a V2 checkpoint from the temporary checkpoint. tf1_bert_checkpoint_converter_lib.create_v2_checkpoint( model, temporary_checkpoint, output_path, checkpoint_model_name) # Clean up the temporary checkpoint, if it exists. try: tf.io.gfile.rmtree(temporary_checkpoint_dir) except tf.errors.OpError: # If it doesn't exist, we don't need to clean it up; continue. pass def main(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") output_path = FLAGS.converted_checkpoint_path v1_checkpoint = FLAGS.checkpoint_to_convert checkpoint_model_name = FLAGS.checkpoint_model_name converted_model = FLAGS.converted_model bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file) convert_checkpoint( bert_config=bert_config, output_path=output_path, v1_checkpoint=v1_checkpoint, checkpoint_model_name=checkpoint_model_name, converted_model=converted_model) if __name__ == "__main__": app.run(main)