# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common flags for importing hyperparameters.""" from absl import flags from official.utils.flags import core as flags_core FLAGS = flags.FLAGS def define_gin_flags(): """Define common gin configurable flags.""" flags.DEFINE_multi_string('gin_file', None, 'List of paths to the config files.') flags.DEFINE_multi_string( 'gin_param', None, 'Newline separated list of Gin parameter bindings.') def define_common_hparams_flags(): """Define the common flags across models.""" flags.DEFINE_string( 'model_dir', default=None, help=('The directory where the model and training/evaluation summaries' 'are stored.')) flags.DEFINE_integer( 'train_batch_size', default=None, help='Batch size for training.') flags.DEFINE_integer( 'eval_batch_size', default=None, help='Batch size for evaluation.') flags.DEFINE_string( 'precision', default=None, help=('Precision to use; one of: {bfloat16, float32}')) flags.DEFINE_string( 'config_file', default=None, help=('A YAML file which specifies overrides. Note that this file can be ' 'used as an override template to override the default parameters ' 'specified in Python. If the same parameter is specified in both ' '`--config_file` and `--params_override`, the one in ' '`--params_override` will be used finally.')) flags.DEFINE_string( 'params_override', default=None, help=('a YAML/JSON string or a YAML file which specifies additional ' 'overrides over the default parameters and those specified in ' '`--config_file`. Note that this is supposed to be used only to ' 'override the model parameters, but not the parameters like TPU ' 'specific flags. One canonical use case of `--config_file` and ' '`--params_override` is users first define a template config file ' 'using `--config_file`, then use `--params_override` to adjust the ' 'minimal set of tuning parameters, for example setting up different' ' `train_batch_size`. ' 'The final override order of parameters: default_model_params --> ' 'params from config_file --> params in params_override.' 'See also the help message of `--config_file`.')) flags.DEFINE_integer('save_checkpoint_freq', None, 'Number of steps to save checkpoint.') def initialize_common_flags(): """Define the common flags across models.""" define_common_hparams_flags() flags_core.define_device(tpu=True) flags_core.define_base( num_gpu=True, model_dir=False, data_dir=False, batch_size=False) flags_core.define_distribution(worker_hosts=True, task_index=True) flags_core.define_performance(all_reduce_alg=True, num_packs=True) # Reset the default value of num_gpus to zero. FLAGS.num_gpus = 0 flags.DEFINE_string( 'strategy_type', 'mirrored', 'Type of distribute strategy.' 'One of mirrored, tpu and multiworker.') def strategy_flags_dict(): """Returns TPU and/or GPU related flags in a dictionary.""" return { 'distribution_strategy': FLAGS.strategy_type, # TPUStrategy related flags. 'tpu': FLAGS.tpu, # MultiWorkerMirroredStrategy related flags. 'all_reduce_alg': FLAGS.all_reduce_alg, 'worker_hosts': FLAGS.worker_hosts, 'task_index': FLAGS.task_index, # MirroredStrategy and OneDeviceStrategy 'num_gpus': FLAGS.num_gpus, 'num_packs': FLAGS.num_packs, } def hparam_flags_dict(): """Returns model params related flags in a dictionary.""" return { 'data_dir': FLAGS.data_dir, 'model_dir': FLAGS.model_dir, 'train_batch_size': FLAGS.train_batch_size, 'eval_batch_size': FLAGS.eval_batch_size, 'precision': FLAGS.precision, 'config_file': FLAGS.config_file, 'params_override': FLAGS.params_override, }