# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for distribution util functions.""" import sys import tensorflow as tf, tf_keras from official.common import distribute_utils TPU_TEST = 'test_tpu' in sys.argv[0] class DistributeUtilsTest(tf.test.TestCase): """Tests for distribute util functions.""" def test_invalid_args(self): with self.assertRaisesRegex(ValueError, '`num_gpus` can not be negative.'): _ = distribute_utils.get_distribution_strategy(num_gpus=-1) with self.assertRaisesRegex(ValueError, '.*If you meant to pass the string .*'): _ = distribute_utils.get_distribution_strategy( distribution_strategy=False, num_gpus=0) with self.assertRaisesRegex(ValueError, 'When 2 GPUs are specified.*'): _ = distribute_utils.get_distribution_strategy( distribution_strategy='off', num_gpus=2) with self.assertRaisesRegex(ValueError, '`OneDeviceStrategy` can not be used.*'): _ = distribute_utils.get_distribution_strategy( distribution_strategy='one_device', num_gpus=2) def test_one_device_strategy_cpu(self): ds = distribute_utils.get_distribution_strategy('one_device', num_gpus=0) self.assertEquals(ds.num_replicas_in_sync, 1) self.assertEquals(len(ds.extended.worker_devices), 1) self.assertIn('CPU', ds.extended.worker_devices[0]) def test_one_device_strategy_gpu(self): ds = distribute_utils.get_distribution_strategy('one_device', num_gpus=1) self.assertEquals(ds.num_replicas_in_sync, 1) self.assertEquals(len(ds.extended.worker_devices), 1) self.assertIn('GPU', ds.extended.worker_devices[0]) def test_mirrored_strategy(self): # CPU only. _ = distribute_utils.get_distribution_strategy(num_gpus=0) # 5 GPUs. ds = distribute_utils.get_distribution_strategy(num_gpus=5) self.assertEquals(ds.num_replicas_in_sync, 5) self.assertEquals(len(ds.extended.worker_devices), 5) for device in ds.extended.worker_devices: self.assertIn('GPU', device) _ = distribute_utils.get_distribution_strategy( distribution_strategy='mirrored', num_gpus=2, all_reduce_alg='nccl', num_packs=2) with self.assertRaisesRegex( ValueError, 'When used with `mirrored`, valid values for all_reduce_alg are.*'): _ = distribute_utils.get_distribution_strategy( distribution_strategy='mirrored', num_gpus=2, all_reduce_alg='dummy', num_packs=2) def test_mwms(self): distribute_utils.configure_cluster(worker_hosts=None, task_index=-1) ds = distribute_utils.get_distribution_strategy( 'multi_worker_mirrored', all_reduce_alg='nccl') self.assertIsInstance( ds, tf.distribute.experimental.MultiWorkerMirroredStrategy) with self.assertRaisesRegex( ValueError, 'When used with `multi_worker_mirrored`, valid values.*'): _ = distribute_utils.get_distribution_strategy( 'multi_worker_mirrored', all_reduce_alg='dummy') def test_no_strategy(self): ds = distribute_utils.get_distribution_strategy('off') self.assertIs(ds, tf.distribute.get_strategy()) def test_tpu_strategy(self): if not TPU_TEST: self.skipTest('Only Cloud TPU VM instances can have local TPUs.') with self.assertRaises(ValueError): _ = distribute_utils.get_distribution_strategy('tpu') ds = distribute_utils.get_distribution_strategy('tpu', tpu_address='local') self.assertIsInstance( ds, tf.distribute.TPUStrategy) def test_invalid_strategy(self): with self.assertRaisesRegexp( ValueError, 'distribution_strategy must be a string but got: False. If'): distribute_utils.get_distribution_strategy(False) with self.assertRaisesRegexp( ValueError, 'distribution_strategy must be a string but got: 1'): distribute_utils.get_distribution_strategy(1) def test_get_strategy_scope(self): ds = distribute_utils.get_distribution_strategy('one_device', num_gpus=0) with distribute_utils.get_strategy_scope(ds): self.assertIs(tf.distribute.get_strategy(), ds) with distribute_utils.get_strategy_scope(None): self.assertIsNot(tf.distribute.get_strategy(), ds) if __name__ == '__main__': tf.test.main()