# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A script to export BERT as a TF-Hub SavedModel. This script is **DEPRECATED** for exporting BERT encoder models; see the error message in by main() for details. """ from typing import Text # Import libraries from absl import app from absl import flags from absl import logging import tensorflow as tf, tf_keras from official.legacy.bert import bert_models from official.legacy.bert import configs FLAGS = flags.FLAGS flags.DEFINE_string("bert_config_file", None, "Bert configuration file to define core bert layers.") flags.DEFINE_string("model_checkpoint_path", None, "File path to TF model checkpoint.") flags.DEFINE_string("export_path", None, "TF-Hub SavedModel destination path.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_bool( "do_lower_case", None, "Whether to lowercase. If None, " "do_lower_case will be enabled if 'uncased' appears in the " "name of --vocab_file") flags.DEFINE_enum("model_type", "encoder", ["encoder", "squad"], "What kind of BERT model to export.") def create_bert_model(bert_config: configs.BertConfig) -> tf_keras.Model: """Creates a BERT keras core model from BERT configuration. Args: bert_config: A `BertConfig` to create the core model. Returns: A keras model. """ # Adds input layers just as placeholders. input_word_ids = tf_keras.layers.Input( shape=(None,), dtype=tf.int32, name="input_word_ids") input_mask = tf_keras.layers.Input( shape=(None,), dtype=tf.int32, name="input_mask") input_type_ids = tf_keras.layers.Input( shape=(None,), dtype=tf.int32, name="input_type_ids") transformer_encoder = bert_models.get_transformer_encoder( bert_config, sequence_length=None) sequence_output, pooled_output = transformer_encoder( [input_word_ids, input_mask, input_type_ids]) # To keep consistent with legacy hub modules, the outputs are # "pooled_output" and "sequence_output". return tf_keras.Model( inputs=[input_word_ids, input_mask, input_type_ids], outputs=[pooled_output, sequence_output]), transformer_encoder def export_bert_tfhub(bert_config: configs.BertConfig, model_checkpoint_path: Text, hub_destination: Text, vocab_file: Text, do_lower_case: bool = None): """Restores a tf_keras.Model and saves for TF-Hub.""" # If do_lower_case is not explicit, default to checking whether "uncased" is # in the vocab file name if do_lower_case is None: do_lower_case = "uncased" in vocab_file logging.info("Using do_lower_case=%s based on name of vocab_file=%s", do_lower_case, vocab_file) core_model, encoder = create_bert_model(bert_config) checkpoint = tf.train.Checkpoint( model=encoder, # Legacy checkpoints. encoder=encoder) checkpoint.restore(model_checkpoint_path).assert_existing_objects_matched() core_model.vocab_file = tf.saved_model.Asset(vocab_file) core_model.do_lower_case = tf.Variable(do_lower_case, trainable=False) core_model.save(hub_destination, include_optimizer=False, save_format="tf") def export_bert_squad_tfhub(bert_config: configs.BertConfig, model_checkpoint_path: Text, hub_destination: Text, vocab_file: Text, do_lower_case: bool = None): """Restores a tf_keras.Model for BERT with SQuAD and saves for TF-Hub.""" # If do_lower_case is not explicit, default to checking whether "uncased" is # in the vocab file name if do_lower_case is None: do_lower_case = "uncased" in vocab_file logging.info("Using do_lower_case=%s based on name of vocab_file=%s", do_lower_case, vocab_file) span_labeling, _ = bert_models.squad_model(bert_config, max_seq_length=None) checkpoint = tf.train.Checkpoint(model=span_labeling) checkpoint.restore(model_checkpoint_path).assert_existing_objects_matched() span_labeling.vocab_file = tf.saved_model.Asset(vocab_file) span_labeling.do_lower_case = tf.Variable(do_lower_case, trainable=False) span_labeling.save(hub_destination, include_optimizer=False, save_format="tf") def main(_): bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.model_type == "encoder": deprecation_note = ( "nlp/bert/export_tfhub is **DEPRECATED** for exporting BERT encoder " "models. Please switch to nlp/tools/export_tfhub for exporting BERT " "(and other) encoders with dict inputs/outputs conforming to " "https://www.tensorflow.org/hub/common_saved_model_apis/text#transformer-encoders" ) logging.error(deprecation_note) print("\n\nNOTICE:", deprecation_note, "\n") export_bert_tfhub(bert_config, FLAGS.model_checkpoint_path, FLAGS.export_path, FLAGS.vocab_file, FLAGS.do_lower_case) elif FLAGS.model_type == "squad": export_bert_squad_tfhub(bert_config, FLAGS.model_checkpoint_path, FLAGS.export_path, FLAGS.vocab_file, FLAGS.do_lower_case) else: raise ValueError("Unsupported model_type %s." % FLAGS.model_type) if __name__ == "__main__": app.run(main)