# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model architecture factory.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from official.legacy.detection.dataloader import maskrcnn_parser from official.legacy.detection.dataloader import olnmask_parser from official.legacy.detection.dataloader import retinanet_parser from official.legacy.detection.dataloader import shapemask_parser def parser_generator(params, mode): """Generator function for various dataset parser.""" if params.architecture.parser == 'retinanet_parser': anchor_params = params.anchor parser_params = params.retinanet_parser parser_fn = retinanet_parser.Parser( output_size=parser_params.output_size, min_level=params.architecture.min_level, max_level=params.architecture.max_level, num_scales=anchor_params.num_scales, aspect_ratios=anchor_params.aspect_ratios, anchor_size=anchor_params.anchor_size, match_threshold=parser_params.match_threshold, unmatched_threshold=parser_params.unmatched_threshold, aug_rand_hflip=parser_params.aug_rand_hflip, aug_scale_min=parser_params.aug_scale_min, aug_scale_max=parser_params.aug_scale_max, use_autoaugment=parser_params.use_autoaugment, autoaugment_policy_name=parser_params.autoaugment_policy_name, skip_crowd_during_training=parser_params.skip_crowd_during_training, max_num_instances=parser_params.max_num_instances, use_bfloat16=params.architecture.use_bfloat16, mode=mode) elif params.architecture.parser == 'maskrcnn_parser': anchor_params = params.anchor parser_params = params.maskrcnn_parser parser_fn = maskrcnn_parser.Parser( output_size=parser_params.output_size, min_level=params.architecture.min_level, max_level=params.architecture.max_level, num_scales=anchor_params.num_scales, aspect_ratios=anchor_params.aspect_ratios, anchor_size=anchor_params.anchor_size, rpn_match_threshold=parser_params.rpn_match_threshold, rpn_unmatched_threshold=parser_params.rpn_unmatched_threshold, rpn_batch_size_per_im=parser_params.rpn_batch_size_per_im, rpn_fg_fraction=parser_params.rpn_fg_fraction, aug_rand_hflip=parser_params.aug_rand_hflip, aug_scale_min=parser_params.aug_scale_min, aug_scale_max=parser_params.aug_scale_max, skip_crowd_during_training=parser_params.skip_crowd_during_training, max_num_instances=parser_params.max_num_instances, include_mask=params.architecture.include_mask, mask_crop_size=parser_params.mask_crop_size, use_bfloat16=params.architecture.use_bfloat16, mode=mode) elif params.architecture.parser == 'olnmask_parser': anchor_params = params.anchor parser_params = params.olnmask_parser parser_fn = olnmask_parser.Parser( output_size=parser_params.output_size, min_level=params.architecture.min_level, max_level=params.architecture.max_level, num_scales=anchor_params.num_scales, aspect_ratios=anchor_params.aspect_ratios, anchor_size=anchor_params.anchor_size, rpn_match_threshold=parser_params.rpn_match_threshold, rpn_unmatched_threshold=parser_params.rpn_unmatched_threshold, rpn_batch_size_per_im=parser_params.rpn_batch_size_per_im, rpn_fg_fraction=parser_params.rpn_fg_fraction, aug_rand_hflip=parser_params.aug_rand_hflip, aug_scale_min=parser_params.aug_scale_min, aug_scale_max=parser_params.aug_scale_max, skip_crowd_during_training=parser_params.skip_crowd_during_training, max_num_instances=parser_params.max_num_instances, include_mask=params.architecture.include_mask, mask_crop_size=parser_params.mask_crop_size, use_bfloat16=params.architecture.use_bfloat16, mode=mode, has_centerness=parser_params.has_centerness, rpn_center_match_iou_threshold=( parser_params.rpn_center_match_iou_threshold), rpn_center_unmatched_iou_threshold=( parser_params.rpn_center_unmatched_iou_threshold), rpn_num_center_samples_per_im=( parser_params.rpn_num_center_samples_per_im), class_agnostic=parser_params.class_agnostic, train_class=parser_params.train_class,) elif params.architecture.parser == 'shapemask_parser': anchor_params = params.anchor parser_params = params.shapemask_parser parser_fn = shapemask_parser.Parser( output_size=parser_params.output_size, min_level=params.architecture.min_level, max_level=params.architecture.max_level, num_scales=anchor_params.num_scales, aspect_ratios=anchor_params.aspect_ratios, anchor_size=anchor_params.anchor_size, use_category=parser_params.use_category, outer_box_scale=parser_params.outer_box_scale, box_jitter_scale=parser_params.box_jitter_scale, num_sampled_masks=parser_params.num_sampled_masks, mask_crop_size=parser_params.mask_crop_size, mask_min_level=parser_params.mask_min_level, mask_max_level=parser_params.mask_max_level, upsample_factor=parser_params.upsample_factor, match_threshold=parser_params.match_threshold, unmatched_threshold=parser_params.unmatched_threshold, aug_rand_hflip=parser_params.aug_rand_hflip, aug_scale_min=parser_params.aug_scale_min, aug_scale_max=parser_params.aug_scale_max, skip_crowd_during_training=parser_params.skip_crowd_during_training, max_num_instances=parser_params.max_num_instances, use_bfloat16=params.architecture.use_bfloat16, mask_train_class=parser_params.mask_train_class, mode=mode) else: raise ValueError('Parser %s is not supported.' % params.architecture.parser) return parser_fn