# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFM binary for the progressive trainer.""" from absl import app from absl import flags import gin from official.common import distribute_utils # pylint: disable=unused-import from official.common import registry_imports # pylint: enable=unused-import from official.common import flags as tfm_flags from official.core import task_factory from official.core import train_utils from official.modeling import performance from official.modeling.fast_training.progressive import train_lib FLAGS = flags.FLAGS def main(_): gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params) params = train_utils.parse_configuration(FLAGS) model_dir = FLAGS.model_dir if 'train' in FLAGS.mode: # Pure eval modes do not output yaml files. Otherwise continuous eval job # may race against the train job for writing the same file. train_utils.serialize_config(params, model_dir) # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16' # can have significant impact on model speeds by utilizing float16 in case of # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when # dtype is float16 if params.runtime.mixed_precision_dtype: performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype) distribution_strategy = distribute_utils.get_distribution_strategy( distribution_strategy=params.runtime.distribution_strategy, all_reduce_alg=params.runtime.all_reduce_alg, num_gpus=params.runtime.num_gpus, tpu_address=params.runtime.tpu, **params.runtime.model_parallelism()) with distribution_strategy.scope(): task = task_factory.get_task(params.task, logging_dir=model_dir) train_lib.run_experiment( distribution_strategy=distribution_strategy, task=task, mode=FLAGS.mode, params=params, model_dir=model_dir) train_utils.save_gin_config(FLAGS.mode, model_dir) if __name__ == '__main__': tfm_flags.define_flags() app.run(main)