# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning task dataset generator.""" import functools import json import os # Import libraries from absl import app from absl import flags import tensorflow as tf, tf_keras from official.nlp.data import classifier_data_lib from official.nlp.data import sentence_retrieval_lib # word-piece tokenizer based squad_lib from official.nlp.data import squad_lib as squad_lib_wp # sentence-piece tokenizer based squad_lib from official.nlp.data import squad_lib_sp from official.nlp.data import tagging_data_lib from official.nlp.tools import tokenization FLAGS = flags.FLAGS flags.DEFINE_enum( "fine_tuning_task_type", "classification", ["classification", "regression", "squad", "retrieval", "tagging"], "The name of the BERT fine tuning task for which data " "will be generated.") # BERT classification specific flags. flags.DEFINE_string( "input_data_dir", None, "The input data dir. Should contain the .tsv files (or other data files) " "for the task.") flags.DEFINE_enum( "classification_task_name", "MNLI", [ "AX", "COLA", "IMDB", "MNLI", "MRPC", "PAWS-X", "QNLI", "QQP", "RTE", "SST-2", "STS-B", "WNLI", "XNLI", "XTREME-XNLI", "XTREME-PAWS-X", "AX-g", "SUPERGLUE-RTE", "CB", "BoolQ", "WIC" ], "The name of the task to train BERT classifier. The " "difference between XTREME-XNLI and XNLI is: 1. the format " "of input tsv files; 2. the dev set for XTREME is english " "only and for XNLI is all languages combined. Same for " "PAWS-X.") # MNLI task-specific flag. flags.DEFINE_enum("mnli_type", "matched", ["matched", "mismatched"], "The type of MNLI dataset.") # XNLI task-specific flag. flags.DEFINE_string( "xnli_language", "en", "Language of training data for XNLI task. If the value is 'all', the data " "of all languages will be used for training.") # PAWS-X task-specific flag. flags.DEFINE_string( "pawsx_language", "en", "Language of training data for PAWS-X task. If the value is 'all', the data " "of all languages will be used for training.") # XTREME classification specific flags. Only used in XtremePawsx and XtremeXnli. flags.DEFINE_string( "translated_input_data_dir", None, "The translated input data dir. Should contain the .tsv files (or other " "data files) for the task.") # Retrieval task-specific flags. flags.DEFINE_enum("retrieval_task_name", "bucc", ["bucc", "tatoeba"], "The name of sentence retrieval task for scoring") # Tagging task-specific flags. flags.DEFINE_enum("tagging_task_name", "panx", ["panx", "udpos"], "The name of BERT tagging (token classification) task.") flags.DEFINE_bool("tagging_only_use_en_train", True, "Whether only use english training data in tagging.") # BERT Squad task-specific flags. flags.DEFINE_string( "squad_data_file", None, "The input data file in for generating training data for BERT squad task.") flags.DEFINE_string( "translated_squad_data_folder", None, "The translated data folder for generating training data for BERT squad " "task.") flags.DEFINE_integer( "doc_stride", 128, "When splitting up a long document into chunks, how much stride to " "take between chunks.") flags.DEFINE_integer( "max_query_length", 64, "The maximum number of tokens for the question. Questions longer than " "this will be truncated to this length.") flags.DEFINE_bool( "version_2_with_negative", False, "If true, the SQuAD examples contain some that do not have an answer.") flags.DEFINE_bool( "xlnet_format", False, "If true, then data will be preprocessed in a paragraph, query, class order" " instead of the BERT-style class, paragraph, query order.") # XTREME specific flags. flags.DEFINE_bool("only_use_en_dev", True, "Whether only use english dev data.") # Shared flags across BERT fine-tuning tasks. flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string( "train_data_output_path", None, "The path in which generated training input data will be written as tf" " records.") flags.DEFINE_string( "eval_data_output_path", None, "The path in which generated evaluation input data will be written as tf" " records.") flags.DEFINE_string( "test_data_output_path", None, "The path in which generated test input data will be written as tf" " records. If None, do not generate test data. Must be a pattern template" " as test_{}.tfrecords if processor has language specific test data.") flags.DEFINE_string("meta_data_file_path", None, "The path in which input meta data will be written.") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer( "max_seq_length", 128, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_string("sp_model_file", "", "The path to the model used by sentence piece tokenizer.") flags.DEFINE_enum( "tokenization", "WordPiece", ["WordPiece", "SentencePiece"], "Specifies the tokenizer implementation, i.e., whether to use WordPiece " "or SentencePiece tokenizer. Canonical BERT uses WordPiece tokenizer, " "while ALBERT uses SentencePiece tokenizer.") flags.DEFINE_string( "tfds_params", "", "Comma-separated list of TFDS parameter assigments for " "generic classfication data import (for more details " "see the TfdsProcessor class documentation).") def generate_classifier_dataset(): """Generates classifier dataset and returns input meta data.""" if FLAGS.classification_task_name in [ "COLA", "WNLI", "SST-2", "MRPC", "QQP", "STS-B", "MNLI", "QNLI", "RTE", "AX", "SUPERGLUE-RTE", "CB", "BoolQ", "WIC", ]: assert not FLAGS.input_data_dir or FLAGS.tfds_params else: assert (FLAGS.input_data_dir and FLAGS.classification_task_name or FLAGS.tfds_params) if FLAGS.tokenization == "WordPiece": tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) processor_text_fn = tokenization.convert_to_unicode else: assert FLAGS.tokenization == "SentencePiece" tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file) processor_text_fn = functools.partial( tokenization.preprocess_text, lower=FLAGS.do_lower_case) if FLAGS.tfds_params: processor = classifier_data_lib.TfdsProcessor( tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn) return classifier_data_lib.generate_tf_record_from_data_file( processor, None, tokenizer, train_data_output_path=FLAGS.train_data_output_path, eval_data_output_path=FLAGS.eval_data_output_path, test_data_output_path=FLAGS.test_data_output_path, max_seq_length=FLAGS.max_seq_length) else: processors = { "ax": classifier_data_lib.AxProcessor, "cola": classifier_data_lib.ColaProcessor, "imdb": classifier_data_lib.ImdbProcessor, "mnli": functools.partial( classifier_data_lib.MnliProcessor, mnli_type=FLAGS.mnli_type), "mrpc": classifier_data_lib.MrpcProcessor, "qnli": classifier_data_lib.QnliProcessor, "qqp": classifier_data_lib.QqpProcessor, "rte": classifier_data_lib.RteProcessor, "sst-2": classifier_data_lib.SstProcessor, "sts-b": classifier_data_lib.StsBProcessor, "xnli": functools.partial( classifier_data_lib.XnliProcessor, language=FLAGS.xnli_language), "paws-x": functools.partial( classifier_data_lib.PawsxProcessor, language=FLAGS.pawsx_language), "wnli": classifier_data_lib.WnliProcessor, "xtreme-xnli": functools.partial( classifier_data_lib.XtremeXnliProcessor, translated_data_dir=FLAGS.translated_input_data_dir, only_use_en_dev=FLAGS.only_use_en_dev), "xtreme-paws-x": functools.partial( classifier_data_lib.XtremePawsxProcessor, translated_data_dir=FLAGS.translated_input_data_dir, only_use_en_dev=FLAGS.only_use_en_dev), "ax-g": classifier_data_lib.AXgProcessor, "superglue-rte": classifier_data_lib.SuperGLUERTEProcessor, "cb": classifier_data_lib.CBProcessor, "boolq": classifier_data_lib.BoolQProcessor, "wic": classifier_data_lib.WnliProcessor, } task_name = FLAGS.classification_task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name](process_text_fn=processor_text_fn) return classifier_data_lib.generate_tf_record_from_data_file( processor, FLAGS.input_data_dir, tokenizer, train_data_output_path=FLAGS.train_data_output_path, eval_data_output_path=FLAGS.eval_data_output_path, test_data_output_path=FLAGS.test_data_output_path, max_seq_length=FLAGS.max_seq_length) def generate_regression_dataset(): """Generates regression dataset and returns input meta data.""" if FLAGS.tokenization == "WordPiece": tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) processor_text_fn = tokenization.convert_to_unicode else: assert FLAGS.tokenization == "SentencePiece" tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file) processor_text_fn = functools.partial( tokenization.preprocess_text, lower=FLAGS.do_lower_case) if FLAGS.tfds_params: processor = classifier_data_lib.TfdsProcessor( tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn) return classifier_data_lib.generate_tf_record_from_data_file( processor, None, tokenizer, train_data_output_path=FLAGS.train_data_output_path, eval_data_output_path=FLAGS.eval_data_output_path, test_data_output_path=FLAGS.test_data_output_path, max_seq_length=FLAGS.max_seq_length) else: raise ValueError("No data processor found for the given regression task.") def generate_squad_dataset(): """Generates squad training dataset and returns input meta data.""" assert FLAGS.squad_data_file if FLAGS.tokenization == "WordPiece": return squad_lib_wp.generate_tf_record_from_json_file( input_file_path=FLAGS.squad_data_file, vocab_file_path=FLAGS.vocab_file, output_path=FLAGS.train_data_output_path, translated_input_folder=FLAGS.translated_squad_data_folder, max_seq_length=FLAGS.max_seq_length, do_lower_case=FLAGS.do_lower_case, max_query_length=FLAGS.max_query_length, doc_stride=FLAGS.doc_stride, version_2_with_negative=FLAGS.version_2_with_negative, xlnet_format=FLAGS.xlnet_format) else: assert FLAGS.tokenization == "SentencePiece" return squad_lib_sp.generate_tf_record_from_json_file( input_file_path=FLAGS.squad_data_file, sp_model_file=FLAGS.sp_model_file, output_path=FLAGS.train_data_output_path, translated_input_folder=FLAGS.translated_squad_data_folder, max_seq_length=FLAGS.max_seq_length, do_lower_case=FLAGS.do_lower_case, max_query_length=FLAGS.max_query_length, doc_stride=FLAGS.doc_stride, xlnet_format=FLAGS.xlnet_format, version_2_with_negative=FLAGS.version_2_with_negative) def generate_retrieval_dataset(): """Generate retrieval test and dev dataset and returns input meta data.""" assert (FLAGS.input_data_dir and FLAGS.retrieval_task_name) if FLAGS.tokenization == "WordPiece": tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) processor_text_fn = tokenization.convert_to_unicode else: assert FLAGS.tokenization == "SentencePiece" tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file) processor_text_fn = functools.partial( tokenization.preprocess_text, lower=FLAGS.do_lower_case) processors = { "bucc": sentence_retrieval_lib.BuccProcessor, "tatoeba": sentence_retrieval_lib.TatoebaProcessor, } task_name = FLAGS.retrieval_task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % task_name) processor = processors[task_name](process_text_fn=processor_text_fn) return sentence_retrieval_lib.generate_sentence_retrevial_tf_record( processor, FLAGS.input_data_dir, tokenizer, FLAGS.eval_data_output_path, FLAGS.test_data_output_path, FLAGS.max_seq_length) def generate_tagging_dataset(): """Generates tagging dataset.""" processors = { "panx": functools.partial( tagging_data_lib.PanxProcessor, only_use_en_train=FLAGS.tagging_only_use_en_train, only_use_en_dev=FLAGS.only_use_en_dev), "udpos": functools.partial( tagging_data_lib.UdposProcessor, only_use_en_train=FLAGS.tagging_only_use_en_train, only_use_en_dev=FLAGS.only_use_en_dev), } task_name = FLAGS.tagging_task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % task_name) if FLAGS.tokenization == "WordPiece": tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) processor_text_fn = tokenization.convert_to_unicode elif FLAGS.tokenization == "SentencePiece": tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file) processor_text_fn = functools.partial( tokenization.preprocess_text, lower=FLAGS.do_lower_case) else: raise ValueError("Unsupported tokenization: %s" % FLAGS.tokenization) processor = processors[task_name]() return tagging_data_lib.generate_tf_record_from_data_file( processor, FLAGS.input_data_dir, tokenizer, FLAGS.max_seq_length, FLAGS.train_data_output_path, FLAGS.eval_data_output_path, FLAGS.test_data_output_path, processor_text_fn) def main(_): if FLAGS.tokenization == "WordPiece": if not FLAGS.vocab_file: raise ValueError( "FLAG vocab_file for word-piece tokenizer is not specified.") else: assert FLAGS.tokenization == "SentencePiece" if not FLAGS.sp_model_file: raise ValueError( "FLAG sp_model_file for sentence-piece tokenizer is not specified.") if FLAGS.fine_tuning_task_type != "retrieval": flags.mark_flag_as_required("train_data_output_path") if FLAGS.fine_tuning_task_type == "classification": input_meta_data = generate_classifier_dataset() elif FLAGS.fine_tuning_task_type == "regression": input_meta_data = generate_regression_dataset() elif FLAGS.fine_tuning_task_type == "retrieval": input_meta_data = generate_retrieval_dataset() elif FLAGS.fine_tuning_task_type == "squad": input_meta_data = generate_squad_dataset() else: assert FLAGS.fine_tuning_task_type == "tagging" input_meta_data = generate_tagging_dataset() tf.io.gfile.makedirs(os.path.dirname(FLAGS.meta_data_file_path)) with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer: writer.write(json.dumps(input_meta_data, indent=4) + "\n") if __name__ == "__main__": flags.mark_flag_as_required("meta_data_file_path") app.run(main)