# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Create masked LM/next sentence masked_lm TF examples for BERT.""" import collections import itertools import random # Import libraries from absl import app from absl import flags from absl import logging import tensorflow as tf, tf_keras from official.nlp.tools import tokenization FLAGS = flags.FLAGS flags.DEFINE_string("input_file", None, "Input raw text file (or comma-separated list of files).") flags.DEFINE_string( "output_file", None, "Output TF example file (or comma-separated list of files).") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_bool( "do_whole_word_mask", False, "Whether to use whole word masking rather than per-WordPiece masking.") flags.DEFINE_integer( "max_ngram_size", None, "Mask contiguous whole words (n-grams) of up to `max_ngram_size` using a " "weighting scheme to favor shorter n-grams. " "Note: `--do_whole_word_mask=True` must also be set when n-gram masking.") flags.DEFINE_bool( "gzip_compress", False, "Whether to use `GZIP` compress option to get compressed TFRecord files.") flags.DEFINE_bool( "use_v2_feature_names", False, "Whether to use the feature names consistent with the models.") flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.") flags.DEFINE_integer("max_predictions_per_seq", 20, "Maximum number of masked LM predictions per sequence.") flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.") flags.DEFINE_integer( "dupe_factor", 10, "Number of times to duplicate the input data (with different masks).") flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.") flags.DEFINE_float( "short_seq_prob", 0.1, "Probability of creating sequences which are shorter than the " "maximum length.") class TrainingInstance(object): """A single training instance (sentence pair).""" def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels, is_random_next): self.tokens = tokens self.segment_ids = segment_ids self.is_random_next = is_random_next self.masked_lm_positions = masked_lm_positions self.masked_lm_labels = masked_lm_labels def __str__(self): s = "" s += "tokens: %s\n" % (" ".join( [tokenization.printable_text(x) for x in self.tokens])) s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids])) s += "is_random_next: %s\n" % self.is_random_next s += "masked_lm_positions: %s\n" % (" ".join( [str(x) for x in self.masked_lm_positions])) s += "masked_lm_labels: %s\n" % (" ".join( [tokenization.printable_text(x) for x in self.masked_lm_labels])) s += "\n" return s def __repr__(self): return self.__str__() def write_instance_to_example_files(instances, tokenizer, max_seq_length, max_predictions_per_seq, output_files, gzip_compress, use_v2_feature_names): """Creates TF example files from `TrainingInstance`s.""" writers = [] for output_file in output_files: writers.append( tf.io.TFRecordWriter( output_file, options="GZIP" if gzip_compress else "")) writer_index = 0 total_written = 0 for (inst_index, instance) in enumerate(instances): input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) input_mask = [1] * len(input_ids) segment_ids = list(instance.segment_ids) assert len(input_ids) <= max_seq_length while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length masked_lm_positions = list(instance.masked_lm_positions) masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) masked_lm_weights = [1.0] * len(masked_lm_ids) while len(masked_lm_positions) < max_predictions_per_seq: masked_lm_positions.append(0) masked_lm_ids.append(0) masked_lm_weights.append(0.0) next_sentence_label = 1 if instance.is_random_next else 0 features = collections.OrderedDict() if use_v2_feature_names: features["input_word_ids"] = create_int_feature(input_ids) features["input_type_ids"] = create_int_feature(segment_ids) else: features["input_ids"] = create_int_feature(input_ids) features["segment_ids"] = create_int_feature(segment_ids) features["input_mask"] = create_int_feature(input_mask) features["masked_lm_positions"] = create_int_feature(masked_lm_positions) features["masked_lm_ids"] = create_int_feature(masked_lm_ids) features["masked_lm_weights"] = create_float_feature(masked_lm_weights) features["next_sentence_labels"] = create_int_feature([next_sentence_label]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writers[writer_index].write(tf_example.SerializeToString()) writer_index = (writer_index + 1) % len(writers) total_written += 1 if inst_index < 20: logging.info("*** Example ***") logging.info("tokens: %s", " ".join( [tokenization.printable_text(x) for x in instance.tokens])) for feature_name in features.keys(): feature = features[feature_name] values = [] if feature.int64_list.value: values = feature.int64_list.value elif feature.float_list.value: values = feature.float_list.value logging.info("%s: %s", feature_name, " ".join([str(x) for x in values])) for writer in writers: writer.close() logging.info("Wrote %d total instances", total_written) def create_int_feature(values): feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return feature def create_float_feature(values): feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) return feature def create_training_instances(input_files, tokenizer, max_seq_length, dupe_factor, short_seq_prob, masked_lm_prob, max_predictions_per_seq, rng, do_whole_word_mask=False, max_ngram_size=None): """Create `TrainingInstance`s from raw text.""" all_documents = [[]] # Input file format: # (1) One sentence per line. These should ideally be actual sentences, not # entire paragraphs or arbitrary spans of text. (Because we use the # sentence boundaries for the "next sentence prediction" task). # (2) Blank lines between documents. Document boundaries are needed so # that the "next sentence prediction" task doesn't span between documents. for input_file in input_files: with tf.io.gfile.GFile(input_file, "rb") as reader: while True: line = tokenization.convert_to_unicode(reader.readline()) if not line: break line = line.strip() # Empty lines are used as document delimiters if not line: all_documents.append([]) tokens = tokenizer.tokenize(line) if tokens: all_documents[-1].append(tokens) # Remove empty documents all_documents = [x for x in all_documents if x] rng.shuffle(all_documents) vocab_words = list(tokenizer.vocab.keys()) instances = [] for _ in range(dupe_factor): for document_index in range(len(all_documents)): instances.extend( create_instances_from_document( all_documents, document_index, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, vocab_words, rng, do_whole_word_mask, max_ngram_size)) rng.shuffle(instances) return instances def create_instances_from_document( all_documents, document_index, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, vocab_words, rng, do_whole_word_mask=False, max_ngram_size=None): """Creates `TrainingInstance`s for a single document.""" document = all_documents[document_index] # Account for [CLS], [SEP], [SEP] max_num_tokens = max_seq_length - 3 # We *usually* want to fill up the entire sequence since we are padding # to `max_seq_length` anyways, so short sequences are generally wasted # computation. However, we *sometimes* # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter # sequences to minimize the mismatch between pre-training and fine-tuning. # The `target_seq_length` is just a rough target however, whereas # `max_seq_length` is a hard limit. target_seq_length = max_num_tokens if rng.random() < short_seq_prob: target_seq_length = rng.randint(2, max_num_tokens) # We DON'T just concatenate all of the tokens from a document into a long # sequence and choose an arbitrary split point because this would make the # next sentence prediction task too easy. Instead, we split the input into # segments "A" and "B" based on the actual "sentences" provided by the user # input. instances = [] current_chunk = [] current_length = 0 i = 0 while i < len(document): segment = document[i] current_chunk.append(segment) current_length += len(segment) if i == len(document) - 1 or current_length >= target_seq_length: if current_chunk: # `a_end` is how many segments from `current_chunk` go into the `A` # (first) sentence. a_end = 1 if len(current_chunk) >= 2: a_end = rng.randint(1, len(current_chunk) - 1) tokens_a = [] for j in range(a_end): tokens_a.extend(current_chunk[j]) tokens_b = [] # Random next is_random_next = False if len(current_chunk) == 1 or rng.random() < 0.5: is_random_next = True target_b_length = target_seq_length - len(tokens_a) # This should rarely go for more than one iteration for large # corpora. However, just to be careful, we try to make sure that # the random document is not the same as the document # we're processing. for _ in range(10): random_document_index = rng.randint(0, len(all_documents) - 1) if random_document_index != document_index: break random_document = all_documents[random_document_index] random_start = rng.randint(0, len(random_document) - 1) for j in range(random_start, len(random_document)): tokens_b.extend(random_document[j]) if len(tokens_b) >= target_b_length: break # We didn't actually use these segments so we "put them back" so # they don't go to waste. num_unused_segments = len(current_chunk) - a_end i -= num_unused_segments # Actual next else: is_random_next = False for j in range(a_end, len(current_chunk)): tokens_b.extend(current_chunk[j]) truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng) assert len(tokens_a) >= 1 assert len(tokens_b) >= 1 tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) (tokens, masked_lm_positions, masked_lm_labels) = create_masked_lm_predictions( tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng, do_whole_word_mask, max_ngram_size) instance = TrainingInstance( tokens=tokens, segment_ids=segment_ids, is_random_next=is_random_next, masked_lm_positions=masked_lm_positions, masked_lm_labels=masked_lm_labels) instances.append(instance) current_chunk = [] current_length = 0 i += 1 return instances MaskedLmInstance = collections.namedtuple("MaskedLmInstance", ["index", "label"]) # A _Gram is a [half-open) interval of token indices which form a word. # E.g., # words: ["The", "doghouse"] # tokens: ["The", "dog", "##house"] # grams: [(0,1), (1,3)] _Gram = collections.namedtuple("_Gram", ["begin", "end"]) def _window(iterable, size): """Helper to create a sliding window iterator with a given size. E.g., input = [1, 2, 3, 4] _window(input, 1) => [1], [2], [3], [4] _window(input, 2) => [1, 2], [2, 3], [3, 4] _window(input, 3) => [1, 2, 3], [2, 3, 4] _window(input, 4) => [1, 2, 3, 4] _window(input, 5) => None Args: iterable: elements to iterate over. size: size of the window. Yields: Elements of `iterable` batched into a sliding window of length `size`. """ i = iter(iterable) window = [] try: for e in range(0, size): window.append(next(i)) yield window except StopIteration: # handle the case where iterable's length is less than the window size. return for e in i: window = window[1:] + [e] yield window def _contiguous(sorted_grams): """Test whether a sequence of grams is contiguous. Args: sorted_grams: _Grams which are sorted in increasing order. Returns: True if `sorted_grams` are touching each other. E.g., _contiguous([(1, 4), (4, 5), (5, 10)]) == True _contiguous([(1, 2), (4, 5)]) == False """ for a, b in _window(sorted_grams, 2): if a.end != b.begin: return False return True def _masking_ngrams(grams, max_ngram_size, max_masked_tokens, rng): """Create a list of masking {1, ..., n}-grams from a list of one-grams. This is an extention of 'whole word masking' to mask multiple, contiguous words such as (e.g., "the red boat"). Each input gram represents the token indices of a single word, words: ["the", "red", "boat"] tokens: ["the", "red", "boa", "##t"] grams: [(0,1), (1,2), (2,4)] For a `max_ngram_size` of three, possible outputs masks include: 1-grams: (0,1), (1,2), (2,4) 2-grams: (0,2), (1,4) 3-grams; (0,4) Output masks will not overlap and contain less than `max_masked_tokens` total tokens. E.g., for the example above with `max_masked_tokens` as three, valid outputs are, [(0,1), (1,2)] # "the", "red" covering two tokens [(1,2), (2,4)] # "red", "boa", "##t" covering three tokens The length of the selected n-gram follows a zipf weighting to favor shorter n-gram sizes (weight(1)=1, weight(2)=1/2, weight(3)=1/3, ...). Args: grams: List of one-grams. max_ngram_size: Maximum number of contiguous one-grams combined to create an n-gram. max_masked_tokens: Maximum total number of tokens to be masked. rng: `random.Random` generator. Returns: A list of n-grams to be used as masks. """ if not grams: return None grams = sorted(grams) num_tokens = grams[-1].end # Ensure our grams are valid (i.e., they don't overlap). for a, b in _window(grams, 2): if a.end > b.begin: raise ValueError("overlapping grams: {}".format(grams)) # Build map from n-gram length to list of n-grams. ngrams = {i: [] for i in range(1, max_ngram_size+1)} for gram_size in range(1, max_ngram_size+1): for g in _window(grams, gram_size): if _contiguous(g): # Add an n-gram which spans these one-grams. ngrams[gram_size].append(_Gram(g[0].begin, g[-1].end)) # Shuffle each list of n-grams. for v in ngrams.values(): rng.shuffle(v) # Create the weighting for n-gram length selection. # Stored cummulatively for `random.choices` below. cummulative_weights = list( itertools.accumulate([1./n for n in range(1, max_ngram_size+1)])) output_ngrams = [] # Keep a bitmask of which tokens have been masked. masked_tokens = [False] * num_tokens # Loop until we have enough masked tokens or there are no more candidate # n-grams of any length. # Each code path should ensure one or more elements from `ngrams` are removed # to guarentee this loop terminates. while (sum(masked_tokens) < max_masked_tokens and sum(len(s) for s in ngrams.values())): # Pick an n-gram size based on our weights. sz = random.choices(range(1, max_ngram_size+1), cum_weights=cummulative_weights)[0] # Ensure this size doesn't result in too many masked tokens. # E.g., a two-gram contains _at least_ two tokens. if sum(masked_tokens) + sz > max_masked_tokens: # All n-grams of this length are too long and can be removed from # consideration. ngrams[sz].clear() continue # All of the n-grams of this size have been used. if not ngrams[sz]: continue # Choose a random n-gram of the given size. gram = ngrams[sz].pop() num_gram_tokens = gram.end-gram.begin # Check if this would add too many tokens. if num_gram_tokens + sum(masked_tokens) > max_masked_tokens: continue # Check if any of the tokens in this gram have already been masked. if sum(masked_tokens[gram.begin:gram.end]): continue # Found a usable n-gram! Mark its tokens as masked and add it to return. masked_tokens[gram.begin:gram.end] = [True] * (gram.end-gram.begin) output_ngrams.append(gram) return output_ngrams def _wordpieces_to_grams(tokens): """Reconstitue grams (words) from `tokens`. E.g., tokens: ['[CLS]', 'That', 'lit', '##tle', 'blue', 'tru', '##ck', '[SEP]'] grams: [ [1,2), [2, 4), [4,5) , [5, 6)] Args: tokens: list of wordpieces Returns: List of _Grams representing spans of whole words (without "[CLS]" and "[SEP]"). """ grams = [] gram_start_pos = None for i, token in enumerate(tokens): if gram_start_pos is not None and token.startswith("##"): continue if gram_start_pos is not None: grams.append(_Gram(gram_start_pos, i)) if token not in ["[CLS]", "[SEP]"]: gram_start_pos = i else: gram_start_pos = None if gram_start_pos is not None: grams.append(_Gram(gram_start_pos, len(tokens))) return grams def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng, do_whole_word_mask, max_ngram_size=None): """Creates the predictions for the masked LM objective.""" if do_whole_word_mask: grams = _wordpieces_to_grams(tokens) else: # Here we consider each token to be a word to allow for sub-word masking. if max_ngram_size: raise ValueError("cannot use ngram masking without whole word masking") grams = [_Gram(i, i+1) for i in range(0, len(tokens)) if tokens[i] not in ["[CLS]", "[SEP]"]] num_to_predict = min(max_predictions_per_seq, max(1, int(round(len(tokens) * masked_lm_prob)))) # Generate masks. If `max_ngram_size` in [0, None] it means we're doing # whole word masking or token level masking. Both of these can be treated # as the `max_ngram_size=1` case. masked_grams = _masking_ngrams(grams, max_ngram_size or 1, num_to_predict, rng) masked_lms = [] output_tokens = list(tokens) for gram in masked_grams: # 80% of the time, replace all n-gram tokens with [MASK] if rng.random() < 0.8: replacement_action = lambda idx: "[MASK]" else: # 10% of the time, keep all the original n-gram tokens. if rng.random() < 0.5: replacement_action = lambda idx: tokens[idx] # 10% of the time, replace each n-gram token with a random word. else: replacement_action = lambda idx: rng.choice(vocab_words) for idx in range(gram.begin, gram.end): output_tokens[idx] = replacement_action(idx) masked_lms.append(MaskedLmInstance(index=idx, label=tokens[idx])) assert len(masked_lms) <= num_to_predict masked_lms = sorted(masked_lms, key=lambda x: x.index) masked_lm_positions = [] masked_lm_labels = [] for p in masked_lms: masked_lm_positions.append(p.index) masked_lm_labels.append(p.label) return (output_tokens, masked_lm_positions, masked_lm_labels) def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng): """Truncates a pair of sequences to a maximum sequence length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_num_tokens: break trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b assert len(trunc_tokens) >= 1 # We want to sometimes truncate from the front and sometimes from the # back to add more randomness and avoid biases. if rng.random() < 0.5: del trunc_tokens[0] else: trunc_tokens.pop() def main(_): tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) input_files = [] for input_pattern in FLAGS.input_file.split(","): input_files.extend(tf.io.gfile.glob(input_pattern)) logging.info("*** Reading from input files ***") for input_file in input_files: logging.info(" %s", input_file) rng = random.Random(FLAGS.random_seed) instances = create_training_instances( input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor, FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq, rng, FLAGS.do_whole_word_mask, FLAGS.max_ngram_size) output_files = FLAGS.output_file.split(",") logging.info("*** Writing to output files ***") for output_file in output_files: logging.info(" %s", output_file) write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length, FLAGS.max_predictions_per_seq, output_files, FLAGS.gzip_compress, FLAGS.use_v2_feature_names) if __name__ == "__main__": flags.mark_flag_as_required("input_file") flags.mark_flag_as_required("output_file") flags.mark_flag_as_required("vocab_file") app.run(main)