# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FNet encoder network. Based on ["FNet: Mixing Tokens with Fourier Transforms"] (https://aclanthology.org/2022.naacl-main.319/). """ # pylint: disable=g-classes-have-attributes from typing import Any, Callable, Optional, Sequence, Union from absl import logging import tensorflow as tf, tf_keras from official.modeling import tf_utils from official.nlp.modeling import layers _Activation = Union[str, Callable[..., Any]] _Initializer = Union[str, tf_keras.initializers.Initializer] _approx_gelu = lambda x: tf_keras.activations.gelu(x, approximate=True) class FNet(tf_keras.layers.Layer): """FNet encoder network. Based on ["FNet: Mixing Tokens with Fourier Transforms"] (https://aclanthology.org/2022.naacl-main.319/). FNet is an efficient Transformer-like encoder network that replaces self-attention sublayers with Fourier sublayers. This implementation defaults to the canonical FNet Base model, but the network also supports more general mixing models (e.g. 'Linear', 'HNet') and hybrid models (e.g. 'FNet-Hybrid') models that use both mixing and self-attention layers. The input length is fixed to 'max_sequence_length'. Args: vocab_size: The size of the token vocabulary. hidden_size: The size of the transformer hidden layers. num_layers: The number of transformer layers. mixing_mechanism: Type of mixing mechanism used in place of self-attention layers. Defaults to FNet ('Fourier') mixing. use_fft: Only used for spectral mixing mechanisms. Determines whether to use Fast Fourier Transform (True) or the Discrete Fourier Transform (DFT) matrix (False; default) to compute the Fourier Transform. See layers.FourierTransformLayer or layers.HartleyTransformLayer for advice. attention_layers: Specifies which layers, if any, should be attention layers in the encoder. The remaining [0, num_layers) setminus attention_layers will use the specified `mixing_mechanism`. If using attention layers, a good rule of thumb is to place them in the final few layers. num_attention_heads: The number of attention heads for each transformer. The hidden size must be divisible by the number of attention heads. max_sequence_length: The only sequence length that this encoder can consume. This determines the variable shape for positional embeddings and the size of the mixing matrices. type_vocab_size: The number of types that the 'type_ids' input can take. inner_dim: The output dimension of the first Dense layer in a two-layer feedforward network for each transformer. inner_activation: The activation for the first Dense layer in a two-layer feedforward network for each transformer. output_dropout: Dropout probability for the post-attention and output dropout. attention_dropout: The dropout rate to use for the attention layers within the transformer layers. initializer: The initializer to use for all weights in this encoder. output_range: The sequence output range, [0, output_range), by slicing the target sequence of the last transformer layer. `None` means the entire target sequence will attend to the source sequence, which yields the full output. embedding_width: The width of the word embeddings. If the embedding width is not equal to hidden size, embedding parameters will be factorized into two matrices in the shape of ['vocab_size', 'embedding_width'] and ['embedding_width', 'hidden_size'] ('embedding_width' is usually much smaller than 'hidden_size'). embedding_layer: An optional Layer instance which will be called to generate embeddings for the input word IDs. norm_first: Whether to normalize inputs to attention and intermediate dense layers. If set False, output of attention and intermediate dense layers is normalized. with_dense_inputs: Whether to accept dense embeddings as the input. """ def __init__( self, vocab_size: int, hidden_size: int = 768, num_layers: int = 12, mixing_mechanism: layers.MixingMechanism = layers.MixingMechanism.FOURIER, use_fft: bool = False, attention_layers: Sequence[int] = (), num_attention_heads: int = 12, max_sequence_length: int = 512, type_vocab_size: int = 16, inner_dim: int = 3072, inner_activation: _Activation = _approx_gelu, output_dropout: float = 0.1, attention_dropout: float = 0.1, initializer: _Initializer = tf_keras.initializers.TruncatedNormal( stddev=0.02), output_range: Optional[int] = None, embedding_width: Optional[int] = None, embedding_layer: Optional[tf_keras.layers.Layer] = None, norm_first: bool = False, with_dense_inputs: bool = False, **kwargs): super().__init__(**kwargs) activation = tf_keras.activations.get(inner_activation) initializer = tf_keras.initializers.get(initializer) if embedding_width is None: embedding_width = hidden_size self._config = { 'vocab_size': vocab_size, 'hidden_size': hidden_size, 'num_layers': num_layers, 'mixing_mechanism': mixing_mechanism, 'use_fft': use_fft, 'attention_layers': attention_layers, 'num_attention_heads': num_attention_heads, 'max_sequence_length': max_sequence_length, 'type_vocab_size': type_vocab_size, 'inner_dim': inner_dim, 'inner_activation': tf_keras.activations.serialize(activation), 'output_dropout': output_dropout, 'attention_dropout': attention_dropout, 'initializer': tf_keras.initializers.serialize(initializer), 'output_range': output_range, 'embedding_width': embedding_width, 'embedding_layer': embedding_layer, 'norm_first': norm_first, 'with_dense_inputs': with_dense_inputs, } if embedding_layer is None: self._embedding_layer = layers.OnDeviceEmbedding( vocab_size=vocab_size, embedding_width=embedding_width, initializer=tf_utils.clone_initializer(initializer), name='word_embeddings') else: self._embedding_layer = embedding_layer self._position_embedding_layer = layers.PositionEmbedding( initializer=tf_utils.clone_initializer(initializer), max_length=max_sequence_length, name='position_embedding') self._type_embedding_layer = layers.OnDeviceEmbedding( vocab_size=type_vocab_size, embedding_width=embedding_width, initializer=tf_utils.clone_initializer(initializer), use_one_hot=True, name='type_embeddings') self._embedding_norm_layer = tf_keras.layers.LayerNormalization( name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32) self._embedding_dropout = tf_keras.layers.Dropout( rate=output_dropout, name='embedding_dropout') # We project the 'embedding' output to 'hidden_size' if it is not already # 'hidden_size'. self._embedding_projection = None if embedding_width != hidden_size: self._embedding_projection = tf_keras.layers.EinsumDense( '...x,xy->...y', output_shape=hidden_size, bias_axes='y', kernel_initializer=tf_utils.clone_initializer(initializer), name='embedding_projection') self._transformer_layers = [] for layer in range(num_layers): if layer in attention_layers: mixing_layer = layers.MultiHeadAttention( num_heads=num_attention_heads, key_dim=int(hidden_size // num_attention_heads), dropout=attention_dropout, use_bias=True, kernel_initializer=tf_utils.clone_initializer(initializer), name='self_attention', ) else: mixing_layer = self._init_mixing_sublayer(layer) block = layers.TransformerScaffold( num_attention_heads=num_attention_heads, inner_dim=inner_dim, inner_activation=inner_activation, attention_cls=mixing_layer, feedforward_cls=None, # Fallback to default FeedForward class output_dropout=output_dropout, attention_dropout=attention_dropout, norm_first=norm_first, output_range=output_range if layer == num_layers - 1 else None, kernel_initializer=tf_utils.clone_initializer(initializer), name='transformer/layer_%d' % layer) self._transformer_layers.append(block) self._attention_mask_layer = layers.SelfAttentionMask( name='self_attention_mask') self._pooler_layer = tf_keras.layers.Dense( units=hidden_size, activation='tanh', kernel_initializer=tf_utils.clone_initializer(initializer), name='pooler_transform') if with_dense_inputs: self.inputs = dict( # The total length of token ids and dense inputs still has to be # max_sequence_length. It is checked in call(). input_word_ids=tf_keras.Input(shape=(None,), dtype=tf.int32), input_mask=tf_keras.Input(shape=(None,), dtype=tf.int32), input_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32), dense_inputs=tf_keras.Input( shape=(None, embedding_width), dtype=tf.float32), dense_mask=tf_keras.Input(shape=(None,), dtype=tf.int32), dense_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32), ) else: self.inputs = dict( input_word_ids=tf_keras.Input( shape=(max_sequence_length,), dtype=tf.int32), input_mask=tf_keras.Input( shape=(max_sequence_length,), dtype=tf.int32), input_type_ids=tf_keras.Input( shape=(max_sequence_length,), dtype=tf.int32)) self._max_sequence_length = max_sequence_length def call(self, inputs): word_embeddings = None if isinstance(inputs, dict): word_ids = inputs.get('input_word_ids') mask = inputs.get('input_mask') type_ids = inputs.get('input_type_ids') word_embeddings = inputs.get('input_word_embeddings', None) dense_inputs = inputs.get('dense_inputs', None) dense_mask = inputs.get('dense_mask', None) dense_type_ids = inputs.get('dense_type_ids', None) else: raise ValueError('Unexpected inputs type (%s) to %s.' % (type(inputs), self.__class__)) if word_embeddings is None: word_embeddings = self._embedding_layer(word_ids) if dense_inputs is not None: # Concat the dense embeddings at sequence end. word_embeddings = tf.concat([word_embeddings, dense_inputs], axis=1) type_ids = tf.concat([type_ids, dense_type_ids], axis=1) mask = tf.concat([mask, dense_mask], axis=1) # FNet: Sequence length must be the same as `max_sequence_length`. word_embeddings = tf.ensure_shape(word_embeddings, [None, self._max_sequence_length, None]) # Absolute position embeddings. position_embeddings = self._position_embedding_layer(word_embeddings) type_embeddings = self._type_embedding_layer(type_ids) embeddings = word_embeddings + position_embeddings + type_embeddings embeddings = self._embedding_norm_layer(embeddings) embeddings = self._embedding_dropout(embeddings) if self._embedding_projection is not None: embeddings = self._embedding_projection(embeddings) attention_mask = self._attention_mask_layer(embeddings, mask) encoder_outputs = [] x = embeddings for layer in self._transformer_layers: x = layer([x, attention_mask]) encoder_outputs.append(x) last_encoder_output = encoder_outputs[-1] first_token_tensor = last_encoder_output[:, 0, :] pooled_output = self._pooler_layer(first_token_tensor) output = dict( sequence_output=encoder_outputs[-1], pooled_output=pooled_output, encoder_outputs=encoder_outputs) return output def get_embedding_table(self): return self._embedding_layer.embeddings def get_embedding_layer(self): return self._embedding_layer def get_config(self): return dict(self._config) @property def transformer_layers(self): """List of Transformer layers in the encoder.""" return self._transformer_layers @property def pooler_layer(self): """The pooler dense layer after the transformer layers.""" return self._pooler_layer @classmethod def from_config(cls, config, custom_objects=None): if 'embedding_layer' in config and config['embedding_layer'] is not None: warn_string = ( 'You are reloading a model that was saved with a ' 'potentially-shared embedding layer object. If you contine to ' 'train this model, the embedding layer will no longer be shared. ' 'To work around this, load the model outside of the Keras API.') print('WARNING: ' + warn_string) logging.warn(warn_string) return cls(**config) def _init_mixing_sublayer(self, layer: int): """Initializes config-dependent mixing sublayer.""" if self._config['mixing_mechanism'] == layers.MixingMechanism.FOURIER: mixing_sublayer = layers.FourierTransformLayer( use_fft=self._config['use_fft'], name='fourier_transform') elif self._config['mixing_mechanism'] == layers.MixingMechanism.HARTLEY: mixing_sublayer = layers.HartleyTransformLayer( use_fft=self._config['use_fft'], name='hartley_transform') elif self._config['mixing_mechanism'] == layers.MixingMechanism.LINEAR: mixing_sublayer = layers.LinearTransformLayer( kernel_initializer=tf_utils.clone_initializer( self._config['initializer']), name='linear_transform') else: raise ValueError('Unsupported mixing mechanism: %s' % self._config['mixing_mechanism']) return mixing_sublayer