# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train and evaluate the Ranking model.""" from typing import Dict from absl import app from absl import flags from absl import logging import tensorflow as tf, tf_keras from official.common import distribute_utils from official.core import base_trainer from official.core import train_lib from official.core import train_utils from official.recommendation.ranking import common from official.recommendation.ranking.task import RankingTask from official.utils.misc import keras_utils FLAGS = flags.FLAGS class RankingTrainer(base_trainer.Trainer): """A trainer for Ranking Model. The RankingModel has two optimizers for embedding and non embedding weights. Overriding `train_loop_end` method to log learning rates for each optimizer. """ def train_loop_end(self) -> Dict[str, float]: """See base class.""" self.join() logs = {} for metric in self.train_metrics + [self.train_loss]: logs[metric.name] = metric.result() metric.reset_states() for i, optimizer in enumerate(self.optimizer.optimizers): lr_key = f'{type(optimizer).__name__}_{i}_learning_rate' if callable(optimizer.learning_rate): logs[lr_key] = optimizer.learning_rate(self.global_step) else: logs[lr_key] = optimizer.learning_rate return logs def main(_) -> None: """Train and evaluate the Ranking model.""" params = train_utils.parse_configuration(FLAGS) mode = FLAGS.mode model_dir = FLAGS.model_dir if 'train' in FLAGS.mode: # Pure eval modes do not output yaml files. Otherwise continuous eval job # may race against the train job for writing the same file. train_utils.serialize_config(params, model_dir) if FLAGS.seed is not None: logging.info('Setting tf seed.') tf.random.set_seed(FLAGS.seed) task = RankingTask( params=params.task, trainer_config=params.trainer, logging_dir=model_dir, steps_per_execution=params.trainer.steps_per_loop, name='RankingTask') enable_tensorboard = params.trainer.callbacks.enable_tensorboard strategy = distribute_utils.get_distribution_strategy( distribution_strategy=params.runtime.distribution_strategy, all_reduce_alg=params.runtime.all_reduce_alg, num_gpus=params.runtime.num_gpus, tpu_address=params.runtime.tpu) with strategy.scope(): model = task.build_model() def get_dataset_fn(params): return lambda input_context: task.build_inputs(params, input_context) train_dataset = None if 'train' in mode: train_dataset = strategy.distribute_datasets_from_function( get_dataset_fn(params.task.train_data), options=tf.distribute.InputOptions(experimental_fetch_to_device=False)) validation_dataset = None if 'eval' in mode: validation_dataset = strategy.distribute_datasets_from_function( get_dataset_fn(params.task.validation_data), options=tf.distribute.InputOptions(experimental_fetch_to_device=False)) if params.trainer.use_orbit: with strategy.scope(): checkpoint_exporter = train_utils.maybe_create_best_ckpt_exporter( params, model_dir) trainer = RankingTrainer( config=params, task=task, model=model, optimizer=model.optimizer, train='train' in mode, evaluate='eval' in mode, train_dataset=train_dataset, validation_dataset=validation_dataset, checkpoint_exporter=checkpoint_exporter) train_lib.run_experiment( distribution_strategy=strategy, task=task, mode=mode, params=params, model_dir=model_dir, trainer=trainer) else: # Compile/fit checkpoint = tf.train.Checkpoint(model=model, optimizer=model.optimizer) latest_checkpoint = tf.train.latest_checkpoint(model_dir) if latest_checkpoint: checkpoint.restore(latest_checkpoint) logging.info('Loaded checkpoint %s', latest_checkpoint) checkpoint_manager = tf.train.CheckpointManager( checkpoint, directory=model_dir, max_to_keep=params.trainer.max_to_keep, step_counter=model.optimizer.iterations, checkpoint_interval=params.trainer.checkpoint_interval) checkpoint_callback = keras_utils.SimpleCheckpoint(checkpoint_manager) time_callback = keras_utils.TimeHistory( params.task.train_data.global_batch_size, params.trainer.time_history.log_steps, logdir=model_dir if enable_tensorboard else None) callbacks = [checkpoint_callback, time_callback] if enable_tensorboard: tensorboard_callback = tf_keras.callbacks.TensorBoard( log_dir=model_dir, update_freq=min(1000, params.trainer.validation_interval), profile_batch=FLAGS.profile_steps) callbacks.append(tensorboard_callback) num_epochs = (params.trainer.train_steps // params.trainer.validation_interval) current_step = model.optimizer.iterations.numpy() initial_epoch = current_step // params.trainer.validation_interval eval_steps = params.trainer.validation_steps if 'eval' in mode else None if mode in ['train', 'train_and_eval']: logging.info('Training started') history = model.fit( train_dataset, initial_epoch=initial_epoch, epochs=num_epochs, steps_per_epoch=params.trainer.validation_interval, validation_data=validation_dataset, validation_steps=eval_steps, callbacks=callbacks, ) model.summary() logging.info('Train history: %s', history.history) elif mode == 'eval': logging.info('Evaluation started') validation_output = model.evaluate(validation_dataset, steps=eval_steps) logging.info('Evaluation output: %s', validation_output) else: raise NotImplementedError('The mode is not implemented: %s' % mode) if __name__ == '__main__': logging.set_verbosity(logging.INFO) common.define_flags() app.run(main)