# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for the Keras implementations of models.""" import multiprocessing import os import time from absl import logging import tensorflow as tf, tf_keras from tensorflow.python.eager import monitoring global_batch_size_gauge = monitoring.IntGauge( '/tensorflow/training/global_batch_size', 'TF training global batch size') first_batch_time_gauge = monitoring.IntGauge( '/tensorflow/training/first_batch', 'TF training start/end time for first batch (unix epoch time in us.', 'type') first_batch_start_time = first_batch_time_gauge.get_cell('start') first_batch_end_time = first_batch_time_gauge.get_cell('end') class BatchTimestamp(object): """A structure to store batch time stamp.""" def __init__(self, batch_index, timestamp): self.batch_index = batch_index self.timestamp = timestamp def __repr__(self): return "'BatchTimestamp'".format( self.batch_index, self.timestamp) class TimeHistory(tf_keras.callbacks.Callback): """Callback for Keras models.""" def __init__(self, batch_size, log_steps, initial_step=0, logdir=None): """Callback for logging performance. Args: batch_size: Total batch size. log_steps: Interval of steps between logging of batch level stats. initial_step: Optional, initial step. logdir: Optional directory to write TensorBoard summaries. """ # TODO(wcromar): remove this parameter and rely on `logs` parameter of # on_train_batch_end() self.batch_size = batch_size super(TimeHistory, self).__init__() self.log_steps = log_steps self.last_log_step = initial_step self.steps_before_epoch = initial_step self.steps_in_epoch = 0 self.start_time = None global_batch_size_gauge.get_cell().set(batch_size) if logdir: self.summary_writer = tf.summary.create_file_writer(logdir) else: self.summary_writer = None # Logs start of step 1 then end of each step based on log_steps interval. self.timestamp_log = [] # Records the time each epoch takes to run from start to finish of epoch. self.epoch_runtime_log = [] @property def global_steps(self): """The current 1-indexed global step.""" return self.steps_before_epoch + self.steps_in_epoch @property def average_steps_per_second(self): """The average training steps per second across all epochs.""" return self.global_steps / sum(self.epoch_runtime_log) @property def average_examples_per_second(self): """The average number of training examples per second across all epochs.""" return self.average_steps_per_second * self.batch_size def get_examples_per_sec(self, warmup=1): """Calculates examples/sec through timestamp_log and skip warmup period.""" # First entry in timestamp_log is the start of the step 1. The rest of the # entries are the end of each step recorded. time_log = self.timestamp_log seconds = time_log[-1].timestamp - time_log[warmup].timestamp steps = time_log[-1].batch_index - time_log[warmup].batch_index return self.batch_size * steps / seconds def get_startup_time(self, start_time_sec): return self.timestamp_log[0].timestamp - start_time_sec def on_train_end(self, logs=None): self.train_finish_time = time.time() if self.summary_writer: self.summary_writer.flush() def on_epoch_begin(self, epoch, logs=None): self.epoch_start = time.time() def on_batch_begin(self, batch, logs=None): if not self.start_time: self.start_time = time.time() if not first_batch_start_time.value(): first_batch_start_time.set(int(self.start_time * 1000000)) # Record the timestamp of the first global step if not self.timestamp_log: self.timestamp_log.append( BatchTimestamp(self.global_steps, self.start_time)) def on_batch_end(self, batch, logs=None): """Records elapse time of the batch and calculates examples per second.""" if not first_batch_end_time.value(): first_batch_end_time.set(int(time.time() * 1000000)) self.steps_in_epoch = batch + 1 steps_since_last_log = self.global_steps - self.last_log_step if steps_since_last_log >= self.log_steps: now = time.time() elapsed_time = now - self.start_time steps_per_second = steps_since_last_log / elapsed_time examples_per_second = steps_per_second * self.batch_size self.timestamp_log.append(BatchTimestamp(self.global_steps, now)) logging.info( 'TimeHistory: %.2f seconds, %.2f examples/second between steps %d ' 'and %d', elapsed_time, examples_per_second, self.last_log_step, self.global_steps) if self.summary_writer: with self.summary_writer.as_default(): tf.summary.scalar('steps_per_second', steps_per_second, self.global_steps) tf.summary.scalar('examples_per_second', examples_per_second, self.global_steps) self.last_log_step = self.global_steps self.start_time = None def on_epoch_end(self, epoch, logs=None): epoch_run_time = time.time() - self.epoch_start self.epoch_runtime_log.append(epoch_run_time) self.steps_before_epoch += self.steps_in_epoch self.steps_in_epoch = 0 class SimpleCheckpoint(tf_keras.callbacks.Callback): """Keras callback to save tf.train.Checkpoints.""" def __init__(self, checkpoint_manager): super(SimpleCheckpoint, self).__init__() self.checkpoint_manager = checkpoint_manager def on_epoch_end(self, epoch, logs=None): step_counter = self.checkpoint_manager._step_counter.numpy() # pylint: disable=protected-access self.checkpoint_manager.save(checkpoint_number=step_counter) def set_session_config(enable_xla=False): """Sets the session config.""" if enable_xla: tf.config.optimizer.set_jit(True) # TODO(hongkuny): remove set_config_v2 globally. set_config_v2 = set_session_config def set_gpu_thread_mode_and_count(gpu_thread_mode, datasets_num_private_threads, num_gpus, per_gpu_thread_count): """Set GPU thread mode and count, and adjust dataset threads count.""" cpu_count = multiprocessing.cpu_count() logging.info('Logical CPU cores: %s', cpu_count) # Allocate private thread pool for each GPU to schedule and launch kernels per_gpu_thread_count = per_gpu_thread_count or 2 os.environ['TF_GPU_THREAD_MODE'] = gpu_thread_mode os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count) logging.info('TF_GPU_THREAD_COUNT: %s', os.environ['TF_GPU_THREAD_COUNT']) logging.info('TF_GPU_THREAD_MODE: %s', os.environ['TF_GPU_THREAD_MODE']) # Limit data preprocessing threadpool to CPU cores minus number of total GPU # private threads and memory copy threads. total_gpu_thread_count = per_gpu_thread_count * num_gpus num_runtime_threads = num_gpus if not datasets_num_private_threads: datasets_num_private_threads = min( cpu_count - total_gpu_thread_count - num_runtime_threads, num_gpus * 8) logging.info('Set datasets_num_private_threads to %s', datasets_num_private_threads)