# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mock task for testing.""" import dataclasses import numpy as np import tensorflow as tf, tf_keras from official.core import base_task from official.core import config_definitions as cfg from official.core import exp_factory from official.modeling.hyperparams import base_config class MockModel(tf_keras.Model): def __init__(self, network): super().__init__() self.network = network def call(self, inputs): # pytype: disable=signature-mismatch # overriding-parameter-count-checks outputs = self.network(inputs) self.add_loss(tf.reduce_mean(outputs)) return outputs @dataclasses.dataclass class MockTaskConfig(cfg.TaskConfig): pass @base_config.bind(MockTaskConfig) class MockTask(base_task.Task): """Mock task object for testing.""" def __init__(self, params=None, logging_dir=None, name=None): super().__init__(params=params, logging_dir=logging_dir, name=name) def build_model(self, *arg, **kwargs): inputs = tf_keras.layers.Input(shape=(2,), name="random", dtype=tf.float32) outputs = tf_keras.layers.Dense( 1, bias_initializer=tf_keras.initializers.Ones(), name="dense_0")( inputs) network = tf_keras.Model(inputs=inputs, outputs=outputs) return MockModel(network) def build_metrics(self, training: bool = True): del training return [tf_keras.metrics.Accuracy(name="acc")] def validation_step(self, inputs, model: tf_keras.Model, metrics=None): logs = super().validation_step(inputs, model, metrics) logs["counter"] = tf.constant(1, dtype=tf.float32) return logs def build_inputs(self, params): def generate_data(_): x = tf.zeros(shape=(2,), dtype=tf.float32) label = tf.zeros([1], dtype=tf.int32) return x, label dataset = tf.data.Dataset.range(1) dataset = dataset.repeat() dataset = dataset.map( generate_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset.prefetch(buffer_size=1).batch(2, drop_remainder=True) def aggregate_logs(self, state, step_outputs): if state is None: state = {} for key, value in step_outputs.items(): if key not in state: state[key] = [] state[key].append( np.concatenate([np.expand_dims(v.numpy(), axis=0) for v in value])) return state def reduce_aggregated_logs(self, aggregated_logs, global_step=None): for k, v in aggregated_logs.items(): aggregated_logs[k] = np.sum(np.stack(v, axis=0)) return aggregated_logs @exp_factory.register_config_factory("mock") def mock_experiment() -> cfg.ExperimentConfig: config = cfg.ExperimentConfig( task=MockTaskConfig(), trainer=cfg.TrainerConfig()) return config