# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data parser and processing for RetinaNet. Parse image and ground-truths in a dataset to training targets and package them into (image, labels) tuple for RetinaNet. """ from typing import Optional # Import libraries from absl import logging import tensorflow as tf, tf_keras from official.vision.dataloaders import parser from official.vision.dataloaders import utils from official.vision.ops import anchor from official.vision.ops import augment from official.vision.ops import box_ops from official.vision.ops import preprocess_ops class Parser(parser.Parser): """Parser to parse an image and its annotations into a dictionary of tensors.""" def __init__(self, output_size, min_level, max_level, num_scales, aspect_ratios, anchor_size, match_threshold=0.5, unmatched_threshold=0.5, box_coder_weights=None, aug_type=None, aug_rand_hflip=False, aug_scale_min=1.0, aug_scale_max=1.0, use_autoaugment=False, autoaugment_policy_name='v0', skip_crowd_during_training=True, max_num_instances=100, dtype='bfloat16', resize_first: Optional[bool] = None, mode=None, pad=True, keep_aspect_ratio=True): """Initializes parameters for parsing annotations in the dataset. Args: output_size: `Tensor` or `list` for [height, width] of output image. The output_size should be divided by the largest feature stride 2^max_level. min_level: `int` number of minimum level of the output feature pyramid. max_level: `int` number of maximum level of the output feature pyramid. num_scales: `int` number representing intermediate scales added on each level. For instances, num_scales=2 adds one additional intermediate anchor scales [2^0, 2^0.5] on each level. aspect_ratios: `list` of float numbers representing the aspect ratio anchors added on each level. The number indicates the ratio of width to height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each scale level. anchor_size: `float` number representing the scale of size of the base anchor to the feature stride 2^level. match_threshold: `float` number between 0 and 1 representing the lower-bound threshold to assign positive labels for anchors. An anchor with a score over the threshold is labeled positive. unmatched_threshold: `float` number between 0 and 1 representing the upper-bound threshold to assign negative labels for anchors. An anchor with a score below the threshold is labeled negative. box_coder_weights: Optional `list` of 4 positive floats to scale y, x, h, and w when encoding box coordinates. If set to None, does not perform scaling. For Faster RCNN, the open-source implementation recommends using [10.0, 10.0, 5.0, 5.0]. aug_type: An optional Augmentation object to choose from AutoAugment and RandAugment. aug_rand_hflip: `bool`, if True, augment training with random horizontal flip. aug_scale_min: `float`, the minimum scale applied to `output_size` for data augmentation during training. aug_scale_max: `float`, the maximum scale applied to `output_size` for data augmentation during training. use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy during training. autoaugment_policy_name: `string` that specifies the name of the AutoAugment policy that will be used during training. skip_crowd_during_training: `bool`, if True, skip annotations labeled with `is_crowd` equals to 1. max_num_instances: `int` number of maximum number of instances in an image. The groundtruth data will be padded to `max_num_instances`. dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}. resize_first: Optional `bool`, if True, resize the image before the augmentations; computationally more efficient. mode: a ModeKeys. Specifies if this is training, evaluation, prediction or prediction with ground-truths in the outputs. pad: A bool indicating whether to pad the input image to make it size a factor of 2**max_level. The padded size will be the smallest rectangle, such that each dimension is the smallest multiple of 2**max_level which is larger than the desired output size. For example, if desired output size = (320, 320) and max_level = 7, the output padded size = (384, 384). This is necessary when using FPN as it assumes each lower feature map is 2x size of its higher neighbor. Without padding, such relationship may be invalidated. The backbone may produce 5x5 and 2x2 consecutive feature maps, which does not work with FPN. keep_aspect_ratio: `bool`, if True, keep the aspect ratio when resizing. """ self._mode = mode self._max_num_instances = max_num_instances self._skip_crowd_during_training = skip_crowd_during_training # Anchor. self._output_size = output_size self._min_level = min_level self._max_level = max_level self._num_scales = num_scales self._aspect_ratios = aspect_ratios self._anchor_size = anchor_size self._match_threshold = match_threshold self._unmatched_threshold = unmatched_threshold self._box_coder_weights = box_coder_weights # Data augmentation. self._aug_rand_hflip = aug_rand_hflip self._aug_scale_min = aug_scale_min self._aug_scale_max = aug_scale_max # Data augmentation with AutoAugment or RandAugment. self._augmenter = None if aug_type is not None: if aug_type.type == 'autoaug': logging.info('Using AutoAugment.') self._augmenter = augment.AutoAugment( augmentation_name=aug_type.autoaug.augmentation_name, cutout_const=aug_type.autoaug.cutout_const, translate_const=aug_type.autoaug.translate_const) elif aug_type.type == 'randaug': logging.info('Using RandAugment.') self._augmenter = augment.RandAugment.build_for_detection( num_layers=aug_type.randaug.num_layers, magnitude=aug_type.randaug.magnitude, cutout_const=aug_type.randaug.cutout_const, translate_const=aug_type.randaug.translate_const, prob_to_apply=aug_type.randaug.prob_to_apply, exclude_ops=aug_type.randaug.exclude_ops) else: raise ValueError(f'Augmentation policy {aug_type.type} not supported.') # Deprecated. Data Augmentation with AutoAugment. self._use_autoaugment = use_autoaugment self._autoaugment_policy_name = autoaugment_policy_name # Data type. self._dtype = dtype # Input pipeline optimization. self._resize_first = resize_first # Whether to pad image to make its size the smallest factor of 2*max_level. # This is needed when using FPN decoder. self._pad = pad self._keep_aspect_ratio = keep_aspect_ratio def _resize_and_crop_image_and_boxes(self, image, boxes, pad=True): """Resizes and crops image and boxes, optionally with padding.""" # Resizes and crops image. padded_size = None if pad: padded_size = preprocess_ops.compute_padded_size(self._output_size, 2**self._max_level) image, image_info = preprocess_ops.resize_and_crop_image( image, self._output_size, padded_size=padded_size, aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max, keep_aspect_ratio=self._keep_aspect_ratio, ) # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) return image, boxes, image_info def _parse_train_data(self, data, anchor_labeler=None, input_anchor=None): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] # If not empty, `attributes` is a dict of (name, ground_truth) pairs. # `ground_truth` of attributes is assumed in shape [N, attribute_size]. attributes = data.get('groundtruth_attributes', {}) is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training: num_groundtruths = tf.shape(input=classes)[0] with tf.control_dependencies([num_groundtruths, is_crowds]): indices = tf.cond( pred=tf.greater(tf.size(input=is_crowds), 0), true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0], false_fn=lambda: tf.cast(tf.range(num_groundtruths), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) for k, v in attributes.items(): attributes[k] = tf.gather(v, indices) # Gets original image. image = data['image'] image_size = tf.cast(tf.shape(image)[0:2], tf.float32) less_output_pixels = ( self._output_size[0] * self._output_size[1] ) < image_size[0] * image_size[1] # Resizing first can reduce augmentation computation if the original image # has more pixels than the desired output image. # There might be a smarter threshold to compute less_output_pixels as # we keep the padding to the very end, i.e., a resized image likely has less # pixels than self._output_size[0] * self._output_size[1]. resize_first = self._resize_first and less_output_pixels if resize_first: image, boxes, image_info = self._resize_and_crop_image_and_boxes( image, boxes, pad=False ) image = tf.cast(image, dtype=tf.uint8) # Apply autoaug or randaug. if self._augmenter is not None: image, boxes = self._augmenter.distort_with_boxes(image, boxes) image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_ops.denormalize_boxes(boxes, image_shape) if self._pad: padded_size = preprocess_ops.compute_padded_size( self._output_size, 2**self._max_level ) else: padded_size = self._output_size if not resize_first: image, boxes, image_info = ( self._resize_and_crop_image_and_boxes(image, boxes, pad=self._pad) ) image = tf.image.pad_to_bounding_box( image, 0, 0, padded_size[0], padded_size[1] ) image = tf.ensure_shape(image, padded_size + [3]) image_height, image_width, _ = image.get_shape().as_list() # Filters out ground-truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) for k, v in attributes.items(): attributes[k] = tf.gather(v, indices) # Assigns anchors. if input_anchor is None: input_anchor = anchor.build_anchor_generator( min_level=self._min_level, max_level=self._max_level, num_scales=self._num_scales, aspect_ratios=self._aspect_ratios, anchor_size=self._anchor_size, ) anchor_boxes = input_anchor(image_size=(image_height, image_width)) if anchor_labeler is None: anchor_labeler = anchor.AnchorLabeler( match_threshold=self._match_threshold, unmatched_threshold=self._unmatched_threshold, box_coder_weights=self._box_coder_weights, ) (cls_targets, box_targets, att_targets, cls_weights, box_weights) = anchor_labeler.label_anchors( anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes) # Casts input image to desired data type. image = tf.cast(image, dtype=self._dtype) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': anchor_boxes, 'cls_weights': cls_weights, 'box_weights': box_weights, 'image_info': image_info, } if att_targets: labels['attribute_targets'] = att_targets return image, labels def _parse_eval_data(self, data, anchor_labeler=None, input_anchor=None): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] # If not empty, `attributes` is a dict of (name, ground_truth) pairs. # `ground_truth` of attributes is assumed in shape [N, attribute_size]. attributes = data.get('groundtruth_attributes', {}) # Gets original image and its size. image = data['image'] image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image(image) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_ops.denormalize_boxes(boxes, image_shape) # Resizes and crops image. if self._pad: padded_size = preprocess_ops.compute_padded_size( self._output_size, 2**self._max_level ) else: padded_size = self._output_size image, image_info = preprocess_ops.resize_and_crop_image( image, self._output_size, padded_size=padded_size, aug_scale_min=1.0, aug_scale_max=1.0, keep_aspect_ratio=self._keep_aspect_ratio, ) image = tf.ensure_shape(image, padded_size + [3]) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground-truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) for k, v in attributes.items(): attributes[k] = tf.gather(v, indices) # Assigns anchors. if input_anchor is None: input_anchor = anchor.build_anchor_generator( min_level=self._min_level, max_level=self._max_level, num_scales=self._num_scales, aspect_ratios=self._aspect_ratios, anchor_size=self._anchor_size, ) anchor_boxes = input_anchor(image_size=(image_height, image_width)) if anchor_labeler is None: anchor_labeler = anchor.AnchorLabeler( match_threshold=self._match_threshold, unmatched_threshold=self._unmatched_threshold, box_coder_weights=self._box_coder_weights, ) (cls_targets, box_targets, att_targets, cls_weights, box_weights) = anchor_labeler.label_anchors( anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes) # Casts input image to desired data type. image = tf.cast(image, dtype=self._dtype) # Sets up ground-truth data for evaluation. groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_detections': tf.shape(data['groundtruth_classes']), 'image_info': image_info, 'boxes': box_ops.denormalize_boxes( data['groundtruth_boxes'], image_shape), 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } if 'groundtruth_attributes' in data: groundtruths['attributes'] = data['groundtruth_attributes'] groundtruths['source_id'] = utils.process_source_id( groundtruths['source_id']) groundtruths = utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': anchor_boxes, 'cls_weights': cls_weights, 'box_weights': box_weights, 'image_info': image_info, 'groundtruths': groundtruths, } if att_targets: labels['attribute_targets'] = att_targets return image, labels