# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for aspp.""" # Import libraries from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.modeling.backbones import resnet from official.vision.modeling.decoders import aspp class ASPPTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (3, [6, 12, 18, 24], 128, 'v1'), (3, [6, 12, 18], 128, 'v1'), (3, [6, 12], 256, 'v1'), (4, [6, 12, 18, 24], 128, 'v2'), (4, [6, 12, 18], 128, 'v2'), (4, [6, 12], 256, 'v2'), ) def test_network_creation(self, level, dilation_rates, num_filters, spp_layer_version): """Test creation of ASPP.""" input_size = 256 tf_keras.backend.set_image_data_format('channels_last') inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) backbone = resnet.ResNet(model_id=50) network = aspp.ASPP( level=level, dilation_rates=dilation_rates, num_filters=num_filters, spp_layer_version=spp_layer_version) endpoints = backbone(inputs) feats = network(endpoints) self.assertIn(str(level), feats) self.assertAllEqual( [1, input_size // 2**level, input_size // 2**level, num_filters], feats[str(level)].shape.as_list()) def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( level=3, dilation_rates=[6, 12], num_filters=256, pool_kernel_size=None, use_sync_bn=False, norm_momentum=0.99, norm_epsilon=0.001, activation='relu', kernel_initializer='VarianceScaling', kernel_regularizer=None, interpolation='bilinear', dropout_rate=0.2, use_depthwise_convolution='false', spp_layer_version='v1', output_tensor=False, dtype='float32', name='aspp', trainable=True) network = aspp.ASPP(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = aspp.ASPP.from_config(network.get_config()) # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config()) if __name__ == '__main__': tf.test.main()