# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common flags used in XLNet model.""" from absl import flags flags.DEFINE_string("master", default=None, help="master") flags.DEFINE_string( "tpu", default=None, help="The Cloud TPU to use for training. This should be " "either the name used when creating the Cloud TPU, or a " "url like grpc://ip.address.of.tpu:8470.") flags.DEFINE_bool( "use_tpu", default=True, help="Use TPUs rather than plain CPUs.") flags.DEFINE_string("tpu_topology", "2x2", help="TPU topology.") flags.DEFINE_integer( "num_core_per_host", default=8, help="number of cores per host") flags.DEFINE_string("model_dir", default=None, help="Estimator model_dir.") flags.DEFINE_string( "init_checkpoint", default=None, help="Checkpoint path for initializing the model.") flags.DEFINE_bool( "init_from_transformerxl", default=False, help="Init from a transformerxl model checkpoint. Otherwise, init from the " "entire model checkpoint.") # Optimization config flags.DEFINE_float("learning_rate", default=1e-4, help="Maximum learning rate.") flags.DEFINE_float("clip", default=1.0, help="Gradient clipping value.") flags.DEFINE_float("weight_decay_rate", default=0.0, help="Weight decay rate.") # lr decay flags.DEFINE_integer( "warmup_steps", default=0, help="Number of steps for linear lr warmup.") flags.DEFINE_float("adam_epsilon", default=1e-8, help="Adam epsilon.") flags.DEFINE_float( "lr_layer_decay_rate", default=1.0, help="Top layer: lr[L] = FLAGS.learning_rate." "Lower layers: lr[l-1] = lr[l] * lr_layer_decay_rate.") flags.DEFINE_float( "min_lr_ratio", default=0.0, help="Minimum ratio learning rate.") # Training config flags.DEFINE_integer( "train_batch_size", default=16, help="Size of the train batch across all hosts.") flags.DEFINE_integer( "train_steps", default=100000, help="Total number of training steps.") flags.DEFINE_integer( "iterations", default=1000, help="Number of iterations per repeat loop.") # Data config flags.DEFINE_integer( "seq_len", default=0, help="Sequence length for pretraining.") flags.DEFINE_integer( "reuse_len", default=0, help="How many tokens to be reused in the next batch. " "Could be half of `seq_len`.") flags.DEFINE_bool("uncased", False, help="Use uncased inputs or not.") flags.DEFINE_bool( "bi_data", default=False, help="Use bidirectional data streams, " "i.e., forward & backward.") flags.DEFINE_integer("n_token", 32000, help="Vocab size") # Model config flags.DEFINE_integer("mem_len", default=0, help="Number of steps to cache") flags.DEFINE_bool("same_length", default=False, help="Same length attention") flags.DEFINE_integer("clamp_len", default=-1, help="Clamp length") flags.DEFINE_integer("n_layer", default=6, help="Number of layers.") flags.DEFINE_integer("d_model", default=32, help="Dimension of the model.") flags.DEFINE_integer("d_embed", default=32, help="Dimension of the embeddings.") flags.DEFINE_integer("n_head", default=4, help="Number of attention heads.") flags.DEFINE_integer( "d_head", default=8, help="Dimension of each attention head.") flags.DEFINE_integer( "d_inner", default=32, help="Dimension of inner hidden size in positionwise " "feed-forward.") flags.DEFINE_float("dropout", default=0.1, help="Dropout rate.") flags.DEFINE_float("dropout_att", default=0.1, help="Attention dropout rate.") flags.DEFINE_bool("untie_r", default=False, help="Untie r_w_bias and r_r_bias") flags.DEFINE_string( "ff_activation", default="relu", help="Activation type used in position-wise feed-forward.") flags.DEFINE_string( "strategy_type", default="tpu", help="Activation type used in position-wise feed-forward.") flags.DEFINE_bool("use_bfloat16", False, help="Whether to use bfloat16.") # Parameter initialization flags.DEFINE_enum( "init_method", default="normal", enum_values=["normal", "uniform"], help="Initialization method.") flags.DEFINE_float( "init_std", default=0.02, help="Initialization std when init is normal.") flags.DEFINE_float( "init_range", default=0.1, help="Initialization std when init is uniform.") flags.DEFINE_integer( "test_data_size", default=12048, help="Number of test data samples.") flags.DEFINE_string( "train_tfrecord_path", default=None, help="Path to preprocessed training set tfrecord.") flags.DEFINE_string( "test_tfrecord_path", default=None, help="Path to preprocessed test set tfrecord.") flags.DEFINE_integer( "test_batch_size", default=16, help="Size of the test batch across all hosts.") flags.DEFINE_integer( "save_steps", default=1000, help="Number of steps for saving checkpoint.") FLAGS = flags.FLAGS