# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration definitions for multi-task training.""" import dataclasses from typing import Optional, Tuple from official.core import config_definitions as cfg from official.modeling import hyperparams from official.modeling.privacy import configs as dp_configs @dataclasses.dataclass class TaskRoutine(hyperparams.Config): # TODO(hongkuny): deprecate the task_name once we migrated client code. task_name: str = "" task_config: cfg.TaskConfig = None eval_steps: Optional[int] = None task_weight: Optional[float] = 1.0 @dataclasses.dataclass class MultiTaskConfig(hyperparams.Config): init_checkpoint: str = "" model: hyperparams.Config = None task_routines: Tuple[TaskRoutine, ...] = () # Configs for differential privacy # These configs are only effective if you use create_optimizer in # tensorflow_models/official/core/base_task.py # DEPRECATED b/264611883 differential_privacy_config: Optional[ dp_configs.DifferentialPrivacyConfig] = None @dataclasses.dataclass class ProportionalSampleConfig(hyperparams.Config): alpha: float = 1.0 @dataclasses.dataclass class AnnealingSampleConfig(hyperparams.Config): steps_per_epoch: int = 5 total_steps: int = 20 @dataclasses.dataclass class TaskSamplingConfig(hyperparams.OneOfConfig): type: str = "" uniform: hyperparams.Config = dataclasses.field( default_factory=hyperparams.Config ) proportional: ProportionalSampleConfig = dataclasses.field( default_factory=ProportionalSampleConfig ) annealing: AnnealingSampleConfig = dataclasses.field( default_factory=AnnealingSampleConfig ) @dataclasses.dataclass class MultiTaskTrainerConfig(cfg.TrainerConfig): trainer_type: str = "interleaving" task_sampler: TaskSamplingConfig = dataclasses.field( default_factory=lambda: TaskSamplingConfig(type="proportional") ) @dataclasses.dataclass class MultiTaskExperimentConfig(hyperparams.Config): """An experiment config for multi-task training and multi-task evaluation.""" task: MultiTaskConfig = dataclasses.field(default_factory=MultiTaskConfig) trainer: MultiTaskTrainerConfig = dataclasses.field( default_factory=MultiTaskTrainerConfig ) runtime: cfg.RuntimeConfig = dataclasses.field( default_factory=cfg.RuntimeConfig ) @dataclasses.dataclass class MultiEvalExperimentConfig(cfg.ExperimentConfig): """An experiment config for single-task training and multi-task evaluation. Attributes: eval_tasks: individual evaluation tasks. """ eval_tasks: Tuple[TaskRoutine, ...] = ()