# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Adam optimizer with weight decay that exactly matches the original BERT.""" import re from absl import logging import tensorflow as tf, tf_keras class AdamWeightDecay(tf_keras.optimizers.legacy.Adam): """Adam enables L2 weight decay and clip_by_global_norm on gradients. [Warning!]: Keras optimizer supports gradient clipping and has an AdamW implementation. Please consider evaluating the choice in Keras package. Just adding the square of the weights to the loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact with the m and v parameters in strange ways. Instead we want to decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent to adding the square of the weights to the loss with plain (non-momentum) SGD. """ def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, weight_decay_rate=0.0, include_in_weight_decay=None, exclude_from_weight_decay=None, gradient_clip_norm=1.0, name='AdamWeightDecay', **kwargs): super(AdamWeightDecay, self).__init__(learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs) self.weight_decay_rate = weight_decay_rate self.gradient_clip_norm = gradient_clip_norm self._include_in_weight_decay = include_in_weight_decay self._exclude_from_weight_decay = exclude_from_weight_decay logging.info('AdamWeightDecay gradient_clip_norm=%f', gradient_clip_norm) def _prepare_local(self, var_device, var_dtype, apply_state): super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype, # pytype: disable=attribute-error # typed-keras apply_state) apply_state[(var_device, var_dtype)]['weight_decay_rate'] = tf.constant( self.weight_decay_rate, name='adam_weight_decay_rate') def _decay_weights_op(self, var, learning_rate, apply_state): do_decay = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'], use_locking=self._use_locking) return tf.no_op() def apply_gradients(self, grads_and_vars, name=None, experimental_aggregate_gradients=True): grads, tvars = list(zip(*grads_and_vars)) if experimental_aggregate_gradients and self.gradient_clip_norm > 0.0: # when experimental_aggregate_gradients = False, apply_gradients() no # longer implicitly allreduce gradients, users manually allreduce gradient # and passed the allreduced grads_and_vars. For now, the # clip_by_global_norm will be moved to before the explicit allreduce to # keep the math the same as TF 1 and pre TF 2.2 implementation. (grads, _) = tf.clip_by_global_norm( grads, clip_norm=self.gradient_clip_norm) return super(AdamWeightDecay, self).apply_gradients( zip(grads, tvars), name=name, experimental_aggregate_gradients=experimental_aggregate_gradients) def _get_lr(self, var_device, var_dtype, apply_state): """Retrieves the learning rate with the given state.""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} apply_state = apply_state or {} coefficients = apply_state.get((var_device, var_dtype)) if coefficients is None: coefficients = self._fallback_apply_state(var_device, var_dtype) apply_state[(var_device, var_dtype)] = coefficients return coefficients['lr_t'], dict(apply_state=apply_state) def _resource_apply_dense(self, grad, var, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super(AdamWeightDecay, self)._resource_apply_dense(grad, var, **kwargs) # pytype: disable=attribute-error # typed-keras def _resource_apply_sparse(self, grad, var, indices, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super(AdamWeightDecay, self)._resource_apply_sparse(grad, var, indices, **kwargs) # pytype: disable=attribute-error # typed-keras def get_config(self): config = super(AdamWeightDecay, self).get_config() config.update({ 'weight_decay_rate': self.weight_decay_rate, }) return config def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(r, param_name) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True