# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions and classes related to training performance.""" from absl import logging import tensorflow as tf, tf_keras def configure_optimizer(optimizer, use_float16=False, loss_scale=None, use_graph_rewrite=None): """Configures optimizer object with performance options.""" if use_graph_rewrite is not None: logging.warning('`use_graph_rewrite` is deprecated inside ' '`configure_optimizer`. Please remove the usage.') del use_graph_rewrite if use_float16: if loss_scale in (None, 'dynamic'): optimizer = tf_keras.mixed_precision.LossScaleOptimizer(optimizer) else: # loss_scale is a number. We interpret that as a fixed loss scale. optimizer = tf_keras.mixed_precision.LossScaleOptimizer( optimizer, dynamic=False, initial_scale=loss_scale) return optimizer def set_mixed_precision_policy(dtype, loss_scale=None): """Sets the global `tf_keras.mixed_precision.Policy`.""" # TODO(b/191894773): Remove loss_scale argument assert loss_scale is None, ( 'The loss_scale argument must be None. The argument exists for ' 'historical reasons and will be removed soon.') if dtype == tf.float16: tf_keras.mixed_precision.set_global_policy('mixed_float16') elif dtype == tf.bfloat16: tf_keras.mixed_precision.set_global_policy('mixed_bfloat16') elif dtype == tf.float32: tf_keras.mixed_precision.set_global_policy('float32') else: raise ValueError('Unexpected dtype: %s' % dtype)