# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for ops.""" from unittest import mock import tensorflow as tf, tf_keras from official.modeling.privacy import ops class OpsTest(tf.test.TestCase): def test_clip_l2_norm(self): x = tf.constant([4.0, 3.0]) y = tf.constant([[12.0]]) tensors = [(x, x), (y, y)] clipped = ops.clip_l2_norm(tensors, 1.0) for a, b in zip(clipped, tensors): self.assertAllClose(a[0], b[0] / 13.0) # sqrt(4^2 + 3^2 + 12 ^3) = 13 self.assertAllClose(a[1], b[1]) @mock.patch.object(tf.random, 'normal', autospec=True) def test_add_noise(self, mock_random): x = tf.constant([0.0, 0.0]) y = tf.constant([[0.0]]) tensors = [(x, x), (y, y)] mock_random.side_effect = [tf.constant([1.0, 1.0]), tf.constant([[1.0]])] added = ops.add_noise(tensors, 10.0) for a, b in zip(added, tensors): self.assertAllClose(a[0], b[0] + 1.0) self.assertAllClose(a[1], b[1]) _, kwargs = mock_random.call_args self.assertEqual(kwargs['stddev'], 10.0) if __name__ == '__main__': tf.test.main()