# Model Garden NLP Pre-training Experiments This user guide describes experiments on pre-training models in TF-NLP. Here we demonstrate how to run the pre-training experiments on TPU/GPU environment. Please refer to the corresponding experiment to get more detailed instructions. ## Pre-train a BERT from scratch This example pre-trains a BERT model with Wikipedia and Books datasets used by the original BERT paper. The [BERT repo](https://github.com/tensorflow/models/blob/master/official/nlp/data/create_pretraining_data.py) contains detailed information about the Wikipedia dump and [BookCorpus](https://yknzhu.wixsite.com/mbweb). Of course, the pre-training recipe is generic and you can apply the same recipe to your own corpus. Please use the script [`create_pretraining_data.py`](https://github.com/tensorflow/models/blob/master/official/nlp/data/create_pretraining_data.py) which is essentially branched from [BERT research repo](https://github.com/google-research/bert) to get processed pre-training data and it adapts to TF2 symbols and python3 compatibility. Running the pre-training script requires an input and output directory, as well as a vocab file. Note that `max_seq_length` will need to match the sequence length parameter you specify when you run pre-training. ```shell export WORKING_DIR='local disk or cloud location' export BERT_DIR='local disk or cloud location' python models/official/nlp/data/create_pretraining_data.py \ --input_file=$WORKING_DIR/input/input.txt \ --output_file=$WORKING_DIR/output/tf_examples.tfrecord \ --vocab_file=$BERT_DIR/wwm_uncased_L-24_H-1024_A-16/vocab.txt \ --do_lower_case=True \ --max_seq_length=512 \ --max_predictions_per_seq=76 \ --masked_lm_prob=0.15 \ --random_seed=12345 \ --dupe_factor=5 ``` Then, you can update the yaml configuration file, e.g. `configs/experiments/wiki_books_pretrain.yaml` to specify your data paths and update masking-related hyper parameters to match with your specification for the pretraining data. When your data have multiple shards, you can use `*` to include multiple files. To train different BERT sizes, you need to adjust: ``` model: cls_heads: [{activation: tanh, cls_token_idx: 0, dropout_rate: 0.1, inner_dim: 768, name: next_sentence, num_classes: 2}] ``` to match the hidden dimensions. Then, you can start the training and evaluation jobs, which runs the [`bert/pretraining`](https://github.com/tensorflow/models/blob/master/official/nlp/configs/pretraining_experiments.py#L51) experiment: ```shell export OUTPUT_DIR=gs://some_bucket/my_output_dir export PARAMS=$PARAMS,runtime.distribution_strategy=tpu python3 train.py \ --experiment=bert/pretraining \ --mode=train_and_eval \ --model_dir=$OUTPUT_DIR \ --config_file=configs/models/bert_en_uncased_base.yaml \ --config_file=configs/experiments/wiki_books_pretrain.yaml \ --tpu=${TPU_NAME} \ --params_override=$PARAMS ``` ## Pre-train BERT MLM with TFDS datasets This example pre-trains a BERT MLM model with tensorflow_datasets (TFDS) and use tf.text for pre-processing using TPUs. Note that: only wikipedia english corpus is used. You can start the training and evaluation jobs, which runs the [`bert/text_wiki_pretraining`](https://github.com/tensorflow/models/blob/master/official/nlp/configs/pretraining_experiments.py#L88) experiment: ```shell export OUTPUT_DIR=gs://some_bucket/my_output_dir # See the following link for more pre-trained checkpoints: # https://github.com/tensorflow/models/blob/master/official/nlp/docs/pretrained_models.md export BERT_DIR=~/cased_L-12_H-768_A-12 # Override the configurations by FLAGS. Alternatively, you can directly edit # `configs/experiments/wiki_tfds_pretrain.yaml` to specify corresponding fields. export PARAMS=$PARAMS,task.validation_data.vocab_file_path=$BERT_DIR/vocab.txt export PARAMS=$PARAMS,task.train_data.vocab_file_path=$BERT_DIR/vocab.txt export PARAMS=$PARAMS,runtime.distribution_strategy=tpu python3 train.py \ --experiment=bert/text_wiki_pretraining \ --mode=train_and_eval \ --model_dir=$OUTPUT_DIR \ --config_file=configs/experiments/wiki_tfds_pretrain.yaml \ --tpu=${TPU_NAME} \ --params_override=$PARAMS ```