# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Keras-based softmax layer with optional masking.""" # pylint: disable=g-classes-have-attributes import tensorflow as tf, tf_keras def _large_compatible_negative(tensor_type): """Large negative number as Tensor. This function is necessary because the standard value for epsilon in this module (-1e9) cannot be represented using `tf.float16`. Args: tensor_type: A dtype to determine the type. Returns: A large negative number. """ if tensor_type == tf.float16: return tf.float16.min return -1e9 @tf_keras.utils.register_keras_serializable(package='Text') class MaskedSoftmax(tf_keras.layers.Layer): """Performs a softmax with optional masking on a tensor. Args: mask_expansion_axes: Any axes that should be padded on the mask tensor. normalization_axes: On which axes the softmax should perform. """ def __init__(self, mask_expansion_axes=None, normalization_axes=None, **kwargs): self._mask_expansion_axes = mask_expansion_axes if normalization_axes is None: self._normalization_axes = (-1,) else: self._normalization_axes = normalization_axes super().__init__(**kwargs) def call(self, scores, mask=None): if mask is not None: for _ in range(len(scores.shape) - len(mask.shape)): mask = tf.expand_dims(mask, axis=self._mask_expansion_axes) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -1.e9 for masked positions. adder = (1.0 - tf.cast(mask, scores.dtype)) * _large_compatible_negative( scores.dtype) # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. scores += adder if len(self._normalization_axes) == 1: return tf.nn.softmax(scores, axis=self._normalization_axes[0]) else: return tf.math.exp(scores - tf.math.reduce_logsumexp( scores, axis=self._normalization_axes, keepdims=True)) def get_config(self): config = { 'mask_expansion_axes': self._mask_expansion_axes, 'normalization_axes': self._normalization_axes } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))