# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for iou metric.""" import tensorflow as tf, tf_keras from official.vision.evaluation import iou class IoUTest(tf.test.TestCase): def test_config(self): m_obj = iou.PerClassIoU(num_classes=2, name='per_class_iou') self.assertEqual(m_obj.name, 'per_class_iou') self.assertEqual(m_obj.num_classes, 2) m_obj2 = iou.PerClassIoU.from_config(m_obj.get_config()) self.assertEqual(m_obj2.name, 'per_class_iou') self.assertEqual(m_obj2.num_classes, 2) def test_unweighted(self): y_pred = [0, 1, 0, 1] y_true = [0, 0, 1, 1] m_obj = iou.PerClassIoU(num_classes=2) result = m_obj(y_true, y_pred) # cm = [[1, 1], # [1, 1]] # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = [1 / (2 + 2 - 1), 1 / (2 + 2 - 1)] self.assertAllClose(expected_result, result, atol=1e-3) def test_weighted(self): y_pred = tf.constant([0, 1, 0, 1], dtype=tf.float32) y_true = tf.constant([0, 0, 1, 1]) sample_weight = tf.constant([0.2, 0.3, 0.4, 0.1]) m_obj = iou.PerClassIoU(num_classes=2) result = m_obj(y_true, y_pred, sample_weight=sample_weight) # cm = [[0.2, 0.3], # [0.4, 0.1]] # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, 0.1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = [0.2 / (0.6 + 0.5 - 0.2), 0.1 / (0.4 + 0.5 - 0.1)] self.assertAllClose(expected_result, result, atol=1e-3) def test_multi_dim_input(self): y_pred = tf.constant([[0, 1], [0, 1]], dtype=tf.float32) y_true = tf.constant([[0, 0], [1, 1]]) sample_weight = tf.constant([[0.2, 0.3], [0.4, 0.1]]) m_obj = iou.PerClassIoU(num_classes=2) result = m_obj(y_true, y_pred, sample_weight=sample_weight) # cm = [[0.2, 0.3], # [0.4, 0.1]] # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, 0.1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = [0.2 / (0.6 + 0.5 - 0.2), 0.1 / (0.4 + 0.5 - 0.1)] self.assertAllClose(expected_result, result, atol=1e-3) def test_zero_valid_entries(self): m_obj = iou.PerClassIoU(num_classes=2) self.assertAllClose(m_obj.result(), [0, 0], atol=1e-3) def test_zero_and_non_zero_entries(self): y_pred = tf.constant([1], dtype=tf.float32) y_true = tf.constant([1]) m_obj = iou.PerClassIoU(num_classes=2) result = m_obj(y_true, y_pred) # cm = [[0, 0], # [0, 1]] # sum_row = [0, 1], sum_col = [0, 1], true_positives = [0, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = [0, 1 / (1 + 1 - 1)] self.assertAllClose(expected_result, result, atol=1e-3) def test_update_state_and_result(self): y_pred = [0, 1, 0, 1] y_true = [0, 0, 1, 1] m_obj = iou.PerClassIoU(num_classes=2) m_obj.update_state(y_true, y_pred) result = m_obj.result() # cm = [[1, 1], # [1, 1]] # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = [1 / (2 + 2 - 1), 1 / (2 + 2 - 1)] self.assertAllClose(expected_result, result, atol=1e-3) def test_per_class_iou_v2(self): metrics = iou.PerClassIoUV2(num_classes=3) y_true = tf.constant([[ [ [0, 0, 1], [0, 1, 1], ], [ [0, 1, 0], [0, 0, 1], ], ]]) y_pred = tf.constant([[ [ [1, 0, 0], [1, 1, 1], ], [ [1, 1, 1], [1, 0, 1], ], ]]) metrics.update_state(y_true, y_pred) self.assertAllClose([0.0, 1.0, 0.5], metrics.result(), atol=1e-3) def test_per_class_iou_v2_sparse_input(self): metrics = iou.PerClassIoUV2( num_classes=3, sparse_y_true=True, sparse_y_pred=True) y_true = [[ [1, 2, 1], [2, 2, 1], ]] y_pred = [[ [2, 0, 1], [2, 0, 1], ]] metrics.update_state(y_true, y_pred) self.assertAllClose([0., 2. / 3., 1. / 4.], metrics.result(), atol=1e-3) def test_per_class_iou_v2_keep_tailing_dims(self): num_classes = 3 num_channels = 2 metrics = iou.PerClassIoUV2( num_classes=num_classes, shape=(num_classes, num_channels), sparse_y_true=True, sparse_y_pred=True, axis=0) y_pred = tf.constant([2, 1]) y_true = tf.constant([2, 0]) metrics.update_state(y_true, y_pred) self.assertAllClose([[0., 0.], [0., 0.], [1., 0.]], metrics.result(), atol=1e-3) if __name__ == '__main__': tf.test.main()