# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Binary to convert a saved model to tflite model. It requires a SavedModel exported using export_saved_model.py with batch size 1 and input type `tflite`, and using the same config file used for exporting saved model. It includes optional post-training quantization. When using integer quantization, calibration steps need to be provided to calibrate model input. To convert a SavedModel to a TFLite model: EXPERIMENT_TYPE = XX TFLITE_PATH = XX SAVED_MOODEL_DIR = XX CONFIG_FILE = XX export_tflite --experiment=${EXPERIMENT_TYPE} \ --saved_model_dir=${SAVED_MOODEL_DIR} \ --tflite_path=${TFLITE_PATH} \ --config_file=${CONFIG_FILE} \ --quant_type=fp16 \ --calibration_steps=500 """ from absl import app from absl import flags from absl import logging import tensorflow as tf, tf_keras from official.core import exp_factory from official.modeling import hyperparams from official.vision import registry_imports # pylint: disable=unused-import from official.vision.serving import export_tflite_lib FLAGS = flags.FLAGS _EXPERIMENT = flags.DEFINE_string( 'experiment', None, 'experiment type, e.g. retinanet_resnetfpn_coco', required=True) _CONFIG_FILE = flags.DEFINE_multi_string( 'config_file', default='', help='YAML/JSON files which specifies overrides. The override order ' 'follows the order of args. Note that each file ' 'can be used as an override template to override the default parameters ' 'specified in Python. If the same parameter is specified in both ' '`--config_file` and `--params_override`, `config_file` will be used ' 'first, followed by params_override.') _PARAMS_OVERRIDE = flags.DEFINE_string( 'params_override', '', 'The JSON/YAML file or string which specifies the parameter to be overriden' ' on top of `config_file` template.') _SAVED_MODEL_DIR = flags.DEFINE_string( 'saved_model_dir', None, 'The directory to the saved model.', required=True) _TFLITE_PATH = flags.DEFINE_string( 'tflite_path', None, 'The path to the output tflite model.', required=True) _QUANT_TYPE = flags.DEFINE_string( 'quant_type', default=None, help='Post training quantization type. Support `int8_fallback`, ' '`int8_full_fp32_io`, `int8_full`, `fp16`, `qat`, `qat_fp32_io`, ' '`int8_full_int8_io` and `default`. See ' 'https://www.tensorflow.org/lite/performance/post_training_quantization ' 'for more details.') _CALIBRATION_STEPS = flags.DEFINE_integer( 'calibration_steps', 500, 'The number of calibration steps for integer model.') _DENYLISTED_OPS = flags.DEFINE_string( 'denylisted_ops', '', 'The comma-separated string of ops ' 'that are excluded from integer quantization. The name of ' 'ops should be all capital letters, such as CAST or GREATER.' 'This is useful to exclude certains ops that affects quality or latency. ' 'Valid ops that should not be included are quantization friendly ops, such ' 'as CONV_2D, DEPTHWISE_CONV_2D, FULLY_CONNECTED, etc.') def main(_) -> None: params = exp_factory.get_exp_config(_EXPERIMENT.value) if _CONFIG_FILE.value is not None: for config_file in _CONFIG_FILE.value or []: try: params = hyperparams.override_params_dict( params, config_file, is_strict=True ) except KeyError: params = hyperparams.override_params_dict( params, config_file, is_strict=False ) if _PARAMS_OVERRIDE.value: try: params = hyperparams.override_params_dict( params, _PARAMS_OVERRIDE.value, is_strict=True ) except KeyError: params = hyperparams.override_params_dict( params, _PARAMS_OVERRIDE.value, is_strict=False ) params.validate() params.lock() logging.info('Converting SavedModel from %s to TFLite model...', _SAVED_MODEL_DIR.value) if _DENYLISTED_OPS.value: denylisted_ops = list(_DENYLISTED_OPS.value.split(',')) else: denylisted_ops = None tflite_model = export_tflite_lib.convert_tflite_model( saved_model_dir=_SAVED_MODEL_DIR.value, quant_type=_QUANT_TYPE.value, params=params, calibration_steps=_CALIBRATION_STEPS.value, denylisted_ops=denylisted_ops) with tf.io.gfile.GFile(_TFLITE_PATH.value, 'wb') as fw: fw.write(tflite_model) logging.info('TFLite model converted and saved to %s.', _TFLITE_PATH.value) if __name__ == '__main__': app.run(main)