# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper utils for export library.""" from typing import List, Optional import tensorflow as tf, tf_keras # pylint: disable=g-long-lambda def get_image_input_signatures(input_type: str, batch_size: Optional[int], input_image_size: List[int], num_channels: int = 3, input_name: Optional[str] = None): """Gets input signatures for an image. Args: input_type: A `str`, can be either tf_example, image_bytes, or image_tensor. batch_size: `int` for batch size or None. input_image_size: List[int] for the height and width of the input image. num_channels: `int` for number of channels in the input image. input_name: A `str` to set the input image name in the signature, if None, a default name `inputs` will be used. Returns: tf.TensorSpec of the input tensor. """ if input_type == 'image_tensor': input_signature = tf.TensorSpec( shape=[batch_size] + [None] * len(input_image_size) + [num_channels], dtype=tf.uint8, name=input_name) elif input_type in ['image_bytes', 'serve_examples', 'tf_example']: input_signature = tf.TensorSpec( shape=[batch_size], dtype=tf.string, name=input_name) elif input_type == 'tflite': input_signature = tf.TensorSpec( shape=[1] + input_image_size + [num_channels], dtype=tf.float32, name=input_name) else: raise ValueError('Unrecognized `input_type`') return input_signature def decode_image(encoded_image_bytes: str, input_image_size: List[int], num_channels: int = 3,) -> tf.Tensor: """Decodes an image bytes to an image tensor. Use `tf.image.decode_image` to decode an image if input is expected to be 2D image; otherwise use `tf.io.decode_raw` to convert the raw bytes to tensor and reshape it to desire shape. Args: encoded_image_bytes: An encoded image string to be decoded. input_image_size: List[int] for the desired input size. This will be used to infer whether the image is 2d or 3d. num_channels: `int` for number of image channels. Returns: A decoded image tensor. """ if len(input_image_size) == 2: # Decode an image if 2D input is expected. image_tensor = tf.image.decode_image( encoded_image_bytes, channels=num_channels) else: # Convert raw bytes into a tensor and reshape it, if not 2D input. image_tensor = tf.io.decode_raw(encoded_image_bytes, out_type=tf.uint8) image_tensor.set_shape([None] * len(input_image_size) + [num_channels]) return image_tensor def decode_image_tf_example(tf_example_string_tensor: tf.train.Example, input_image_size: List[int], num_channels: int = 3, encoded_key: str = 'image/encoded' ) -> tf.Tensor: """Decodes a TF Example to an image tensor.""" keys_to_features = { encoded_key: tf.io.FixedLenFeature((), tf.string, default_value=''), } parsed_tensors = tf.io.parse_single_example( serialized=tf_example_string_tensor, features=keys_to_features) image_tensor = decode_image( parsed_tensors[encoded_key], input_image_size=input_image_size, num_channels=num_channels) return image_tensor def parse_image( inputs, input_type: str, input_image_size: List[int], num_channels: int): """Parses image.""" if input_type in ['tf_example', 'serve_examples']: decode_image_tf_example_fn = ( lambda x: decode_image_tf_example(x, input_image_size, num_channels)) image_tensor = tf.map_fn( decode_image_tf_example_fn, elems=inputs, fn_output_signature=tf.TensorSpec( shape=[None] * len(input_image_size) + [num_channels], dtype=tf.uint8), ) elif input_type == 'image_bytes': decode_image_fn = lambda x: decode_image(x, input_image_size, num_channels) image_tensor = tf.map_fn( decode_image_fn, elems=inputs, fn_output_signature=tf.TensorSpec( shape=[None] * len(input_image_size) + [num_channels], dtype=tf.uint8),) else: image_tensor = inputs return image_tensor