# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image classification input and model functions for serving/inference.""" import tensorflow as tf, tf_keras from official.vision.modeling import factory from official.vision.ops import preprocess_ops from official.vision.serving import export_base class ClassificationModule(export_base.ExportModule): """classification Module.""" def _build_model(self): input_specs = tf_keras.layers.InputSpec( shape=[self._batch_size] + self._input_image_size + [3]) return factory.build_classification_model( input_specs=input_specs, model_config=self.params.task.model, l2_regularizer=None) def _build_inputs(self, image): """Builds classification model inputs for serving.""" # Center crops and resizes image. if self.params.task.train_data.aug_crop: image = preprocess_ops.center_crop_image(image) image = tf.image.resize( image, self._input_image_size, method=tf.image.ResizeMethod.BILINEAR) image = tf.reshape( image, [self._input_image_size[0], self._input_image_size[1], 3]) # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image( image, offset=preprocess_ops.MEAN_RGB, scale=preprocess_ops.STDDEV_RGB) return image def serve(self, images): """Cast image to float and run inference. Args: images: uint8 Tensor of shape [batch_size, None, None, 3] Returns: Tensor holding classification output logits. """ # Skip image preprocessing when input_type is tflite so it is compatible # with TFLite quantization. if self._input_type != 'tflite': with tf.device('cpu:0'): images = tf.cast(images, dtype=tf.float32) images = tf.nest.map_structure( tf.identity, tf.map_fn( self._build_inputs, elems=images, fn_output_signature=tf.TensorSpec( shape=self._input_image_size + [3], dtype=tf.float32), parallel_iterations=32)) logits = self.inference_step(images) if self.params.task.train_data.is_multilabel: probs = tf.math.sigmoid(logits) else: probs = tf.nn.softmax(logits) return {'logits': logits, 'probs': probs}