# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data parser and processing for Mask R-CNN.""" from typing import Optional # Import libraries import tensorflow as tf, tf_keras from official.vision.configs import common from official.vision.dataloaders import parser from official.vision.dataloaders import utils from official.vision.ops import anchor from official.vision.ops import augment from official.vision.ops import box_ops from official.vision.ops import preprocess_ops class Parser(parser.Parser): """Parser to parse an image and its annotations into a dictionary of tensors.""" def __init__(self, output_size, min_level, max_level, num_scales, aspect_ratios, anchor_size, rpn_match_threshold=0.7, rpn_unmatched_threshold=0.3, rpn_batch_size_per_im=256, rpn_fg_fraction=0.5, aug_rand_hflip=False, aug_rand_vflip=False, aug_scale_min=1.0, aug_scale_max=1.0, aug_type: Optional[common.Augmentation] = None, skip_crowd_during_training=True, max_num_instances=100, include_mask=False, outer_boxes_scale=1.0, mask_crop_size=112, dtype='float32'): """Initializes parameters for parsing annotations in the dataset. Args: output_size: `Tensor` or `list` for [height, width] of output image. The output_size should be divided by the largest feature stride 2^max_level. min_level: `int` number of minimum level of the output feature pyramid. max_level: `int` number of maximum level of the output feature pyramid. num_scales: `int` number representing intermediate scales added on each level. For instances, num_scales=2 adds one additional intermediate anchor scales [2^0, 2^0.5] on each level. aspect_ratios: `list` of float numbers representing the aspect ratio anchors added on each level. The number indicates the ratio of width to height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each scale level. anchor_size: `float` number representing the scale of size of the base anchor to the feature stride 2^level. rpn_match_threshold: rpn_unmatched_threshold: rpn_batch_size_per_im: rpn_fg_fraction: aug_rand_hflip: `bool`, if True, augment training with random horizontal flip. aug_rand_vflip: `bool`, if True, augment training with random vertical flip. aug_scale_min: `float`, the minimum scale applied to `output_size` for data augmentation during training. aug_scale_max: `float`, the maximum scale applied to `output_size` for data augmentation during training. aug_type: An optional Augmentation object with params for AutoAugment. The AutoAug policy should not use rotation/translation/shear. Only in-place augmentations can be used. skip_crowd_during_training: `bool`, if True, skip annotations labeled with `is_crowd` equals to 1. max_num_instances: `int` number of maximum number of instances in an image. The ground-truth data will be padded to `max_num_instances`. include_mask: a bool to indicate whether parse mask ground-truth. outer_boxes_scale: a float to scale up the bounding boxes to generate more inclusive masks. The scale is expected to be >=1.0. mask_crop_size: the size which ground-truth mask is cropped to. dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}. """ self._max_num_instances = max_num_instances self._skip_crowd_during_training = skip_crowd_during_training # Anchor. self._output_size = output_size self._min_level = min_level self._max_level = max_level self._num_scales = num_scales self._aspect_ratios = aspect_ratios self._anchor_size = anchor_size # Target assigning. self._rpn_match_threshold = rpn_match_threshold self._rpn_unmatched_threshold = rpn_unmatched_threshold self._rpn_batch_size_per_im = rpn_batch_size_per_im self._rpn_fg_fraction = rpn_fg_fraction # Data augmentation. self._aug_rand_hflip = aug_rand_hflip self._aug_rand_vflip = aug_rand_vflip self._aug_scale_min = aug_scale_min self._aug_scale_max = aug_scale_max if aug_type and aug_type.type: if aug_type.type == 'autoaug': self._augmenter = augment.AutoAugment( augmentation_name=aug_type.autoaug.augmentation_name, cutout_const=aug_type.autoaug.cutout_const, translate_const=aug_type.autoaug.translate_const) elif aug_type.type == 'randaug': self._augmenter = augment.RandAugment( num_layers=aug_type.randaug.num_layers, magnitude=aug_type.randaug.magnitude, cutout_const=aug_type.randaug.cutout_const, translate_const=aug_type.randaug.translate_const, prob_to_apply=aug_type.randaug.prob_to_apply, exclude_ops=aug_type.randaug.exclude_ops) else: raise ValueError('Augmentation policy {} not supported.'.format( aug_type.type)) else: self._augmenter = None # Mask. self._include_mask = include_mask self._outer_boxes_scale = outer_boxes_scale self._mask_crop_size = mask_crop_size # Image output dtype. self._dtype = dtype def _parse_train_data(self, data): """Parses data for training. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. rpn_score_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. rpn_box_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. gt_boxes: Ground-truth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. gt_classes: Ground-truth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. gt_masks: groundtrugh masks cropped by the bounding box and resized to a fixed size determined by mask_crop_size. """ classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] if self._include_mask: masks = data['groundtruth_instance_masks'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training: num_groundtruths = tf.shape(classes)[0] with tf.control_dependencies([num_groundtruths, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtruths), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) if self._include_mask: masks = tf.gather(masks, indices) # Gets original image and its size. image = data['image'] if self._augmenter is not None: image = self._augmenter.distort(image) image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image(image) # Flips image randomly during training. image, boxes, masks = preprocess_ops.random_horizontal_flip( image, boxes, masks=None if not self._include_mask else masks, prob=tf.where(self._aug_rand_hflip, 0.5, 0.0), ) image, boxes, masks = preprocess_ops.random_vertical_flip( image, boxes, masks=None if not self._include_mask else masks, prob=tf.where(self._aug_rand_vflip, 0.5, 0.0), ) # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. boxes = box_ops.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = preprocess_ops.resize_and_crop_image( image, self._output_size, padded_size=preprocess_ops.compute_padded_size( self._output_size, 2 ** self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. # Now the coordinates of boxes are w.r.t the scaled image. image_scale = image_info[2, :] offset = image_info[3, :] boxes = preprocess_ops.resize_and_crop_boxes( boxes, image_scale, image_info[1, :], offset) # Filters out ground-truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) if self._include_mask: outer_boxes = box_ops.compute_outer_boxes(boxes, image_info[1, :], self._outer_boxes_scale) masks = tf.gather(masks, indices) # Transfer boxes to the original image space and do normalization. cropped_boxes = outer_boxes + tf.tile( tf.expand_dims(offset, axis=0), [1, 2]) cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) cropped_boxes = box_ops.normalize_boxes(cropped_boxes, image_shape) num_masks = tf.shape(masks)[0] masks = tf.image.crop_and_resize( tf.expand_dims(masks, axis=-1), cropped_boxes, box_indices=tf.range(num_masks, dtype=tf.int32), crop_size=[self._mask_crop_size, self._mask_crop_size], method='bilinear') masks = tf.squeeze(masks, axis=-1) # Assigns anchor targets. # Note that after the target assignment, box targets are absolute pixel # offsets w.r.t. the scaled image. input_anchor = anchor.build_anchor_generator( min_level=self._min_level, max_level=self._max_level, num_scales=self._num_scales, aspect_ratios=self._aspect_ratios, anchor_size=self._anchor_size) anchor_boxes = input_anchor(image_size=(image_height, image_width)) anchor_labeler = anchor.RpnAnchorLabeler( self._rpn_match_threshold, self._rpn_unmatched_threshold, self._rpn_batch_size_per_im, self._rpn_fg_fraction) rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors( anchor_boxes, boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32)) # Casts input image to self._dtype image = tf.cast(image, dtype=self._dtype) boxes = preprocess_ops.clip_or_pad_to_fixed_size( boxes, self._max_num_instances, -1) classes = preprocess_ops.clip_or_pad_to_fixed_size( classes, self._max_num_instances, -1) # Packs labels for model_fn outputs. labels = { 'anchor_boxes': anchor_boxes, 'image_info': image_info, 'rpn_score_targets': rpn_score_targets, 'rpn_box_targets': rpn_box_targets, 'gt_boxes': boxes, 'gt_classes': classes, } if self._include_mask: outer_boxes = preprocess_ops.clip_or_pad_to_fixed_size( outer_boxes, self._max_num_instances, -1) masks = preprocess_ops.clip_or_pad_to_fixed_size( masks, self._max_num_instances, -1) labels.update({ 'gt_outer_boxes': outer_boxes, 'gt_masks': masks, }) return image, labels def _parse_eval_data(self, data): """Parses data for evaluation. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: A dictionary of {'images': image, 'labels': labels} where image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. source_ids: Source image id. Default value -1 if the source id is empty in the ground-truth annotation. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. """ # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image(image) # Resizes and crops image. image, image_info = preprocess_ops.resize_and_crop_image( image, self._output_size, padded_size=preprocess_ops.compute_padded_size( self._output_size, 2 ** self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # Casts input image to self._dtype image = tf.cast(image, dtype=self._dtype) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_ops.denormalize_boxes(data['groundtruth_boxes'], image_shape) # Compute Anchor boxes. input_anchor = anchor.build_anchor_generator( min_level=self._min_level, max_level=self._max_level, num_scales=self._num_scales, aspect_ratios=self._aspect_ratios, anchor_size=self._anchor_size) anchor_boxes = input_anchor(image_size=(image_height, image_width)) labels = { 'image_info': image_info, 'anchor_boxes': anchor_boxes, } groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_detections': tf.shape(data['groundtruth_classes'])[0], 'boxes': boxes, 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = utils.process_source_id( groundtruths['source_id']) groundtruths = utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) if self._include_mask: masks = data['groundtruth_instance_masks'] masks = tf.image.crop_and_resize( tf.expand_dims(masks, axis=-1), boxes=data['groundtruth_boxes'], box_indices=tf.range(tf.shape(masks)[0], dtype=tf.int32), crop_size=[self._mask_crop_size, self._mask_crop_size], method='bilinear', ) masks = tf.squeeze(masks, axis=-1) groundtruths['masks'] = preprocess_ops.clip_or_pad_to_fixed_size( masks, self._max_num_instances, -1 ) labels['groundtruths'] = groundtruths return image, labels