# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io # Import libraries import numpy as np from PIL import Image import tensorflow as tf, tf_keras import tensorflow_datasets as tfds from official.vision.configs import common from official.vision.configs import video_classification as exp_cfg from official.vision.dataloaders import video_input AUDIO_KEY = 'features/audio' def fake_seq_example(): # Create fake data. random_image = np.random.randint(0, 256, size=(263, 320, 3), dtype=np.uint8) random_image = Image.fromarray(random_image) label = 42 with io.BytesIO() as buffer: random_image.save(buffer, format='JPEG') raw_image_bytes = buffer.getvalue() seq_example = tf.train.SequenceExample() seq_example.feature_lists.feature_list.get_or_create( video_input.IMAGE_KEY).feature.add().bytes_list.value[:] = [ raw_image_bytes ] seq_example.feature_lists.feature_list.get_or_create( video_input.IMAGE_KEY).feature.add().bytes_list.value[:] = [ raw_image_bytes ] seq_example.context.feature[video_input.LABEL_KEY].int64_list.value[:] = [ label ] random_audio = np.random.normal(size=(10, 256)).tolist() for s in random_audio: seq_example.feature_lists.feature_list.get_or_create( AUDIO_KEY).feature.add().float_list.value[:] = s return seq_example, label class DecoderTest(tf.test.TestCase): """A tf.SequenceExample decoder for the video classification task.""" def test_decoder(self): decoder = video_input.Decoder() seq_example, label = fake_seq_example() serialized_example = seq_example.SerializeToString() decoded_tensors = decoder.decode(tf.convert_to_tensor(serialized_example)) results = tf.nest.map_structure(lambda x: x.numpy(), decoded_tensors) self.assertCountEqual([video_input.IMAGE_KEY, video_input.LABEL_KEY], results.keys()) self.assertEqual(label, results[video_input.LABEL_KEY]) def test_decode_audio(self): decoder = video_input.Decoder() decoder.add_feature(AUDIO_KEY, tf.io.VarLenFeature(dtype=tf.float32)) seq_example, label = fake_seq_example() serialized_example = seq_example.SerializeToString() decoded_tensors = decoder.decode(tf.convert_to_tensor(serialized_example)) results = tf.nest.map_structure(lambda x: x.numpy(), decoded_tensors) self.assertCountEqual( [video_input.IMAGE_KEY, video_input.LABEL_KEY, AUDIO_KEY], results.keys()) self.assertEqual(label, results[video_input.LABEL_KEY]) self.assertEqual(results[AUDIO_KEY].shape, (10, 256)) def test_tfds_decode(self): with tfds.testing.mock_data(num_examples=1): dataset = tfds.load('ucf101', split='train').take(1) data = next(iter(dataset)) decoder = video_input.VideoTfdsDecoder() decoded_tensors = decoder.decode(data) self.assertContainsSubset([video_input.LABEL_KEY, video_input.IMAGE_KEY], decoded_tensors.keys()) class VideoAndLabelParserTest(tf.test.TestCase): def test_video_input(self): params = exp_cfg.kinetics600(is_training=True) params.feature_shape = (2, 224, 224, 3) params.min_image_size = 224 decoder = video_input.Decoder() parser = video_input.Parser(params).parse_fn(params.is_training) seq_example, label = fake_seq_example() input_tensor = tf.constant(seq_example.SerializeToString()) decoded_tensors = decoder.decode(input_tensor) output_tensor = parser(decoded_tensors) image_features, label = output_tensor image = image_features['image'] self.assertAllEqual(image.shape, (2, 224, 224, 3)) self.assertAllEqual(label.shape, (600,)) def test_video_audio_input(self): params = exp_cfg.kinetics600(is_training=True) params.feature_shape = (2, 224, 224, 3) params.min_image_size = 224 params.output_audio = True params.audio_feature = AUDIO_KEY params.audio_feature_shape = (15, 256) decoder = video_input.Decoder() decoder.add_feature(params.audio_feature, tf.io.VarLenFeature(dtype=tf.float32)) parser = video_input.Parser(params).parse_fn(params.is_training) seq_example, label = fake_seq_example() input_tensor = tf.constant(seq_example.SerializeToString()) decoded_tensors = decoder.decode(input_tensor) output_tensor = parser(decoded_tensors) features, label = output_tensor image = features['image'] audio = features['audio'] self.assertAllEqual(image.shape, (2, 224, 224, 3)) self.assertAllEqual(label.shape, (600,)) self.assertEqual(audio.shape, (15, 256)) def test_video_input_random_stride(self): params = exp_cfg.kinetics600(is_training=True) params.feature_shape = (2, 224, 224, 3) params.min_image_size = 224 params.temporal_stride = 2 params.random_stride_range = 1 decoder = video_input.Decoder() parser = video_input.Parser(params).parse_fn(params.is_training) seq_example, label = fake_seq_example() input_tensor = tf.constant(seq_example.SerializeToString()) decoded_tensors = decoder.decode(input_tensor) output_tensor = parser(decoded_tensors) image_features, label = output_tensor image = image_features['image'] self.assertAllEqual(image.shape, (2, 224, 224, 3)) self.assertAllEqual(label.shape, (600,)) def test_video_input_augmentation_returns_shape(self): params = exp_cfg.kinetics600(is_training=True) params.feature_shape = (2, 224, 224, 3) params.min_image_size = 224 params.temporal_stride = 2 params.aug_type = common.Augmentation( type='autoaug', autoaug=common.AutoAugment()) decoder = video_input.Decoder() parser = video_input.Parser(params).parse_fn(params.is_training) seq_example, label = fake_seq_example() input_tensor = tf.constant(seq_example.SerializeToString()) decoded_tensors = decoder.decode(input_tensor) output_tensor = parser(decoded_tensors) image_features, label = output_tensor image = image_features['image'] self.assertAllEqual(image.shape, (2, 224, 224, 3)) self.assertAllEqual(label.shape, (600,)) def test_video_input_image_shape_label_type(self): params = exp_cfg.kinetics600(is_training=True) params.feature_shape = (2, 168, 224, 1) params.min_image_size = 168 params.label_dtype = 'float32' params.one_hot = False decoder = video_input.Decoder() parser = video_input.Parser(params).parse_fn(params.is_training) seq_example, label = fake_seq_example() input_tensor = tf.constant(seq_example.SerializeToString()) decoded_tensors = decoder.decode(input_tensor) output_tensor = parser(decoded_tensors) image_features, label = output_tensor image = image_features['image'] self.assertAllEqual(image.shape, (2, 168, 224, 1)) self.assertAllEqual(label.shape, (1,)) self.assertDTypeEqual(label, tf.float32) if __name__ == '__main__': tf.test.main()