# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for SpineNet.""" # Import libraries from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.modeling.backbones import spinenet class SpineNetTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (128, 0.65, 1, 0.5, 128, 4, 6), (256, 1.0, 1, 0.5, 256, 3, 6), (384, 1.0, 2, 0.5, 256, 4, 7), (512, 1.0, 3, 1.0, 256, 3, 7), (640, 1.3, 4, 1.0, 384, 3, 7), ) def test_network_creation(self, input_size, filter_size_scale, block_repeats, resample_alpha, endpoints_num_filters, min_level, max_level): """Test creation of SpineNet models.""" tf_keras.backend.set_image_data_format('channels_last') input_specs = tf_keras.layers.InputSpec( shape=[None, input_size, input_size, 3]) model = spinenet.SpineNet( input_specs=input_specs, min_level=min_level, max_level=max_level, endpoints_num_filters=endpoints_num_filters, resample_alpha=resample_alpha, block_repeats=block_repeats, filter_size_scale=filter_size_scale, init_stochastic_depth_rate=0.2, ) inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) endpoints = model(inputs) for l in range(min_level, max_level + 1): self.assertIn(str(l), endpoints.keys()) self.assertAllEqual( [1, input_size / 2**l, input_size / 2**l, endpoints_num_filters], endpoints[str(l)].shape.as_list()) @parameterized.parameters( ((128, 128), (128, 128)), ((128, 128), (256, 256)), ((640, 640), (896, 1664)), ) def test_load_from_different_input_specs(self, input_size_1, input_size_2): """Test loading checkpoints with different input size.""" def build_spinenet(input_size): tf_keras.backend.set_image_data_format('channels_last') input_specs = tf_keras.layers.InputSpec( shape=[None, input_size[0], input_size[1], 3]) model = spinenet.SpineNet( input_specs=input_specs, min_level=3, max_level=7, endpoints_num_filters=384, resample_alpha=1.0, block_repeats=2, filter_size_scale=0.5) return model model_1 = build_spinenet(input_size_1) model_2 = build_spinenet(input_size_2) ckpt_1 = tf.train.Checkpoint(backbone=model_1) ckpt_2 = tf.train.Checkpoint(backbone=model_2) ckpt_path = self.get_temp_dir() + '/ckpt' ckpt_1.write(ckpt_path) ckpt_2.restore(ckpt_path).expect_partial() def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( min_level=3, max_level=7, endpoints_num_filters=256, resample_alpha=0.5, block_repeats=1, filter_size_scale=1.0, init_stochastic_depth_rate=0.2, use_sync_bn=False, activation='relu', norm_momentum=0.99, norm_epsilon=0.001, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, ) network = spinenet.SpineNet(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = spinenet.SpineNet.from_config(network.get_config()) # Validate that the config can be forced to JSON. _ = new_network.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config()) @parameterized.parameters( ('relu', tf.nn.relu), ('swish', tf.nn.swish) ) def test_activation(self, activation, activation_fn): model = spinenet.SpineNet(activation=activation) self.assertEqual(model._activation_fn, activation_fn) def test_invalid_activation_raises_valurerror(self): with self.assertRaises(ValueError): spinenet.SpineNet(activation='invalid_activation_name') if __name__ == '__main__': tf.test.main()