# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for FPN.""" # Import libraries from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.modeling.backbones import mobilenet from official.vision.modeling.backbones import resnet from official.vision.modeling.decoders import fpn class FPNTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (256, 3, 7, False, False, 'sum'), (256, 3, 7, False, True, 'sum'), (256, 3, 7, True, False, 'concat'), (256, 3, 7, True, True, 'concat'), ) def test_network_creation(self, input_size, min_level, max_level, use_separable_conv, use_keras_layer, fusion_type): """Test creation of FPN.""" tf_keras.backend.set_image_data_format('channels_last') inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) backbone = resnet.ResNet(model_id=50) network = fpn.FPN( input_specs=backbone.output_specs, min_level=min_level, max_level=max_level, fusion_type=fusion_type, use_separable_conv=use_separable_conv, use_keras_layer=use_keras_layer) endpoints = backbone(inputs) feats = network(endpoints) for level in range(min_level, max_level + 1): self.assertIn(str(level), feats) self.assertAllEqual( [1, input_size // 2**level, input_size // 2**level, 256], feats[str(level)].shape.as_list()) @parameterized.parameters( (256, 3, 7, False, False), (256, 3, 7, False, True), (256, 3, 7, True, False), (256, 3, 7, True, True), ) def test_network_creation_with_mobilenet(self, input_size, min_level, max_level, use_separable_conv, use_keras_layer): """Test creation of FPN with mobilenet backbone.""" tf_keras.backend.set_image_data_format('channels_last') inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) backbone = mobilenet.MobileNet(model_id='MobileNetV2') network = fpn.FPN( input_specs=backbone.output_specs, min_level=min_level, max_level=max_level, use_separable_conv=use_separable_conv, use_keras_layer=use_keras_layer) endpoints = backbone(inputs) feats = network(endpoints) for level in range(min_level, max_level + 1): self.assertIn(str(level), feats) self.assertAllEqual( [1, input_size // 2**level, input_size // 2**level, 256], feats[str(level)].shape.as_list()) def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( input_specs=resnet.ResNet(model_id=50).output_specs, min_level=3, max_level=7, num_filters=256, fusion_type='sum', use_separable_conv=False, use_keras_layer=False, use_sync_bn=False, activation='relu', norm_momentum=0.99, norm_epsilon=0.001, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, ) network = fpn.FPN(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = fpn.FPN.from_config(network.get_config()) # Validate that the config can be forced to JSON. _ = new_network.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config()) if __name__ == '__main__': tf.test.main()