# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for segmentation network.""" from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from official.vision.modeling import backbones from official.vision.modeling import segmentation_model from official.vision.modeling.decoders import fpn from official.vision.modeling.heads import segmentation_heads class SegmentationNetworkTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (128, 2), (128, 3), (128, 4), (256, 2), (256, 3), (256, 4), ) def test_segmentation_network_creation( self, input_size, level): """Test for creation of a segmentation network.""" num_classes = 10 inputs = np.random.rand(2, input_size, input_size, 3) tf_keras.backend.set_image_data_format('channels_last') backbone = backbones.ResNet(model_id=50) decoder = fpn.FPN( input_specs=backbone.output_specs, min_level=2, max_level=7) head = segmentation_heads.SegmentationHead(num_classes, level=level) model = segmentation_model.SegmentationModel( backbone=backbone, decoder=decoder, head=head, mask_scoring_head=None, ) outputs = model(inputs) self.assertAllEqual( [2, input_size // (2**level), input_size // (2**level), num_classes], outputs['logits'].numpy().shape) def test_serialize_deserialize(self): """Validate the network can be serialized and deserialized.""" num_classes = 3 backbone = backbones.ResNet(model_id=50) decoder = fpn.FPN( input_specs=backbone.output_specs, min_level=3, max_level=7) head = segmentation_heads.SegmentationHead(num_classes, level=3) model = segmentation_model.SegmentationModel( backbone=backbone, decoder=decoder, head=head ) config = model.get_config() new_model = segmentation_model.SegmentationModel.from_config(config) # Validate that the config can be forced to JSON. _ = new_model.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(model.get_config(), new_model.get_config()) if __name__ == '__main__': tf.test.main()