# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Learning rate schedule.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf, tf_keras from official.modeling.hyperparams import params_dict class StepLearningRateWithLinearWarmup( tf_keras.optimizers.schedules.LearningRateSchedule): """Class to generate learning rate tensor.""" def __init__(self, total_steps, params): """Creates the step learning rate tensor with linear warmup.""" super(StepLearningRateWithLinearWarmup, self).__init__() self._total_steps = total_steps assert isinstance(params, (dict, params_dict.ParamsDict)) if isinstance(params, dict): params = params_dict.ParamsDict(params) self._params = params def __call__(self, global_step): warmup_lr = self._params.warmup_learning_rate warmup_steps = self._params.warmup_steps init_lr = self._params.init_learning_rate lr_levels = self._params.learning_rate_levels lr_steps = self._params.learning_rate_steps linear_warmup = ( warmup_lr + tf.cast(global_step, dtype=tf.float32) / warmup_steps * (init_lr - warmup_lr)) learning_rate = tf.where(global_step < warmup_steps, linear_warmup, init_lr) for next_learning_rate, start_step in zip(lr_levels, lr_steps): learning_rate = tf.where(global_step >= start_step, next_learning_rate, learning_rate) return learning_rate def get_config(self): return {'_params': self._params.as_dict()} class CosineLearningRateWithLinearWarmup( tf_keras.optimizers.schedules.LearningRateSchedule): """Class to generate learning rate tensor.""" def __init__(self, total_steps, params): """Creates the cosine learning rate tensor with linear warmup.""" super(CosineLearningRateWithLinearWarmup, self).__init__() self._total_steps = total_steps assert isinstance(params, (dict, params_dict.ParamsDict)) if isinstance(params, dict): params = params_dict.ParamsDict(params) self._params = params def __call__(self, global_step): global_step = tf.cast(global_step, dtype=tf.float32) warmup_lr = self._params.warmup_learning_rate warmup_steps = self._params.warmup_steps init_lr = self._params.init_learning_rate total_steps = self._total_steps linear_warmup = ( warmup_lr + global_step / warmup_steps * (init_lr - warmup_lr)) cosine_learning_rate = ( init_lr * (tf.cos(np.pi * (global_step - warmup_steps) / (total_steps - warmup_steps)) + 1.0) / 2.0) learning_rate = tf.where(global_step < warmup_steps, linear_warmup, cosine_learning_rate) return learning_rate def get_config(self): return {'_params': self._params.as_dict()} def learning_rate_generator(total_steps, params): """The learning rate function generator.""" if params.type == 'step': return StepLearningRateWithLinearWarmup(total_steps, params) elif params.type == 'cosine': return CosineLearningRateWithLinearWarmup(total_steps, params) else: raise ValueError('Unsupported learning rate type: {}.'.format(params.type))