# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data parser and processing. Parse image and ground truths in a dataset to training targets and package them into (image, labels) tuple for RetinaNet. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar Focal Loss for Dense Object Detection. arXiv:1708.02002 """ import tensorflow as tf, tf_keras from official.legacy.detection.dataloader import anchor from official.legacy.detection.dataloader import mode_keys as ModeKeys from official.legacy.detection.dataloader import tf_example_decoder from official.legacy.detection.utils import box_utils from official.legacy.detection.utils import input_utils def process_source_id(source_id): """Processes source_id to the right format.""" if source_id.dtype == tf.string: source_id = tf.cast(tf.strings.to_number(source_id), tf.int32) with tf.control_dependencies([source_id]): source_id = tf.cond( pred=tf.equal(tf.size(input=source_id), 0), true_fn=lambda: tf.cast(tf.constant(-1), tf.int32), false_fn=lambda: tf.identity(source_id)) return source_id def pad_groundtruths_to_fixed_size(gt, n): """Pads the first dimension of groundtruths labels to the fixed size.""" gt['boxes'] = input_utils.pad_to_fixed_size(gt['boxes'], n, -1) gt['is_crowds'] = input_utils.pad_to_fixed_size(gt['is_crowds'], n, 0) gt['areas'] = input_utils.pad_to_fixed_size(gt['areas'], n, -1) gt['classes'] = input_utils.pad_to_fixed_size(gt['classes'], n, -1) return gt class Parser(object): """Parser to parse an image and its annotations into a dictionary of tensors.""" def __init__(self, output_size, min_level, max_level, num_scales, aspect_ratios, anchor_size, match_threshold=0.5, unmatched_threshold=0.5, aug_rand_hflip=False, aug_scale_min=1.0, aug_scale_max=1.0, use_autoaugment=False, autoaugment_policy_name='v0', skip_crowd_during_training=True, max_num_instances=100, use_bfloat16=True, mode=None): """Initializes parameters for parsing annotations in the dataset. Args: output_size: `Tensor` or `list` for [height, width] of output image. The output_size should be divided by the largest feature stride 2^max_level. min_level: `int` number of minimum level of the output feature pyramid. max_level: `int` number of maximum level of the output feature pyramid. num_scales: `int` number representing intermediate scales added on each level. For instances, num_scales=2 adds one additional intermediate anchor scales [2^0, 2^0.5] on each level. aspect_ratios: `list` of float numbers representing the aspect raito anchors added on each level. The number indicates the ratio of width to height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each scale level. anchor_size: `float` number representing the scale of size of the base anchor to the feature stride 2^level. match_threshold: `float` number between 0 and 1 representing the lower-bound threshold to assign positive labels for anchors. An anchor with a score over the threshold is labeled positive. unmatched_threshold: `float` number between 0 and 1 representing the upper-bound threshold to assign negative labels for anchors. An anchor with a score below the threshold is labeled negative. aug_rand_hflip: `bool`, if True, augment training with random horizontal flip. aug_scale_min: `float`, the minimum scale applied to `output_size` for data augmentation during training. aug_scale_max: `float`, the maximum scale applied to `output_size` for data augmentation during training. use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy during training. autoaugment_policy_name: `string` that specifies the name of the AutoAugment policy that will be used during training. skip_crowd_during_training: `bool`, if True, skip annotations labeled with `is_crowd` equals to 1. max_num_instances: `int` number of maximum number of instances in an image. The groundtruth data will be padded to `max_num_instances`. use_bfloat16: `bool`, if True, cast output image to tf.bfloat16. mode: a ModeKeys. Specifies if this is training, evaluation, prediction or prediction with groundtruths in the outputs. """ self._mode = mode self._max_num_instances = max_num_instances self._skip_crowd_during_training = skip_crowd_during_training self._is_training = (mode == ModeKeys.TRAIN) self._example_decoder = tf_example_decoder.TfExampleDecoder( include_mask=False) # Anchor. self._output_size = output_size self._min_level = min_level self._max_level = max_level self._num_scales = num_scales self._aspect_ratios = aspect_ratios self._anchor_size = anchor_size self._match_threshold = match_threshold self._unmatched_threshold = unmatched_threshold # Data augmentation. self._aug_rand_hflip = aug_rand_hflip self._aug_scale_min = aug_scale_min self._aug_scale_max = aug_scale_max # Data Augmentation with AutoAugment. self._use_autoaugment = use_autoaugment self._autoaugment_policy_name = autoaugment_policy_name # Device. self._use_bfloat16 = use_bfloat16 # Data is parsed depending on the model Modekey. if mode == ModeKeys.TRAIN: self._parse_fn = self._parse_train_data elif mode == ModeKeys.EVAL: self._parse_fn = self._parse_eval_data elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT: self._parse_fn = self._parse_predict_data else: raise ValueError('mode is not defined.') def __call__(self, value): """Parses data to an image and associated training labels. Args: value: a string tensor holding a serialized tf.Example proto. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: cls_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. box_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. num_positives: number of positive anchors in the image. anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], [y_scale, x_scale], [y_offset, x_offset]]. groundtruths: source_id: source image id. Default value -1 if the source id is empty in the groundtruth annotation. boxes: groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. classes: groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. areas: groundtruth areas annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. is_crowds: groundtruth annotations to indicate if an annotation represents a group of instances by value {0, 1}. The tennsor is padded with 0 to the fixed dimension [self._max_num_instances]. """ with tf.name_scope('parser'): data = self._example_decoder.decode(value) return self._parse_fn(data) def _parse_train_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(input=classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( pred=tf.greater(tf.size(input=is_crowds), 0), true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0], false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) # Gets original image and its size. image = data['image'] image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size(self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, } return image, labels def _parse_eval_data(self, data): """Parses data for training and evaluation.""" groundtruths = {} classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] # Gets original image and its size. image = data['image'] image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size(self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Sets up groundtruth data for evaluation. groundtruths = { 'source_id': data['source_id'], 'num_groundtrtuhs': tf.shape(data['groundtruth_classes']), 'image_info': image_info, 'boxes': box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape), 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = process_source_id(groundtruths['source_id']) groundtruths = pad_groundtruths_to_fixed_size(groundtruths, self._max_num_instances) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, 'groundtruths': groundtruths, } return image, labels def _parse_predict_data(self, data): """Parses data for prediction.""" # Gets original image and its size. image = data['image'] image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size(self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Compute Anchor boxes. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, } # If mode is PREDICT_WITH_GT, returns groundtruths and training targets # in labels. if self._mode == ModeKeys.PREDICT_WITH_GT: # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape) groundtruths = { 'source_id': data['source_id'], 'num_detections': tf.shape(data['groundtruth_classes']), 'boxes': boxes, 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = process_source_id(groundtruths['source_id']) groundtruths = pad_groundtruths_to_fixed_size(groundtruths, self._max_num_instances) labels['groundtruths'] = groundtruths # Computes training objective for evaluation loss. classes = data['groundtruth_classes'] image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) # Assigns anchors. anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) labels['cls_targets'] = cls_targets labels['box_targets'] = box_targets labels['num_positives'] = num_positives return image, labels