# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loads text dataset for the BERT pretraining task.""" import dataclasses from typing import List, Mapping, Optional, Text import tensorflow as tf, tf_keras import tensorflow_text as tf_text from official.common import dataset_fn from official.core import config_definitions as cfg from official.core import input_reader from official.nlp.data import data_loader from official.nlp.data import data_loader_factory from official.nlp.modeling.ops import segment_extractor @dataclasses.dataclass class BertPretrainTextDataConfig(cfg.DataConfig): """Data config for BERT pretraining task (tasks/masked_lm) from text.""" input_path: str = "" doc_batch_size: int = 8 global_batch_size: int = 512 is_training: bool = True seq_length: int = 512 max_predictions_per_seq: int = 76 use_next_sentence_label: bool = True # The name of the text feature fields. The text features will be # concatenated in order. # Note: More than 1 field name is not compatible with NSP. text_field_names: Optional[List[str]] = dataclasses.field( default_factory=lambda: ["text"]) vocab_file_path: str = "" masking_rate: float = 0.15 use_whole_word_masking: bool = False file_type: str = "tfrecord" _CLS_TOKEN = b"[CLS]" _SEP_TOKEN = b"[SEP]" _MASK_TOKEN = b"[MASK]" _NUM_OOV_BUCKETS = 1 # Accounts for [CLS] and 2 x [SEP] tokens _NUM_SPECIAL_TOKENS = 3 @data_loader_factory.register_data_loader_cls(BertPretrainTextDataConfig) class BertPretrainTextDataLoader(data_loader.DataLoader): """A class to load text dataset for BERT pretraining task.""" def __init__(self, params): """Inits `BertPretrainTextDataLoader` class. Args: params: A `BertPretrainTextDataConfig` object. """ if len(params.text_field_names) > 1 and params.use_next_sentence_label: raise ValueError("Currently there is no support for more than text field " "while generating next sentence labels.") self._params = params self._seq_length = params.seq_length self._max_predictions_per_seq = params.max_predictions_per_seq self._use_next_sentence_label = params.use_next_sentence_label self._masking_rate = params.masking_rate self._use_whole_word_masking = params.use_whole_word_masking lookup_table_init = tf.lookup.TextFileInitializer( params.vocab_file_path, key_dtype=tf.string, key_index=tf.lookup.TextFileIndex.WHOLE_LINE, value_dtype=tf.int64, value_index=tf.lookup.TextFileIndex.LINE_NUMBER) self._vocab_lookup_table = tf.lookup.StaticVocabularyTable( lookup_table_init, num_oov_buckets=_NUM_OOV_BUCKETS, lookup_key_dtype=tf.string) self._cls_token = self._vocab_lookup_table.lookup(tf.constant(_CLS_TOKEN)) self._sep_token = self._vocab_lookup_table.lookup(tf.constant(_SEP_TOKEN)) self._mask_token = self._vocab_lookup_table.lookup(tf.constant(_MASK_TOKEN)) # -_NUM_OOV_BUCKETS to offset unused OOV bucket. self._vocab_size = self._vocab_lookup_table.size() - _NUM_OOV_BUCKETS def _decode(self, record: tf.Tensor) -> Mapping[Text, tf.Tensor]: """Decodes a serialized tf.Example.""" name_to_features = {} for text_field_name in self._params.text_field_names: name_to_features[text_field_name] = tf.io.FixedLenFeature([], tf.string) return tf.io.parse_single_example(record, name_to_features) def _tokenize(self, segments): """Tokenize the input segments.""" # Tokenize segments tokenizer = tf_text.BertTokenizer( self._vocab_lookup_table, token_out_type=tf.int64) if self._use_whole_word_masking: # tokenize the segments which should have the shape: # [num_sentence, (num_words), (num_wordpieces)] segments = [tokenizer.tokenize(s) for s in segments] else: # tokenize the segments and merge out the token dimension so that each # segment has the shape: [num_sentence, (num_wordpieces)] segments = [tokenizer.tokenize(s).merge_dims(-2, -1) for s in segments] # Truncate inputs trimmer = tf_text.WaterfallTrimmer( self._seq_length - _NUM_SPECIAL_TOKENS, axis=-1) truncated_segments = trimmer.trim(segments) # Combine segments, get segment ids and add special tokens return tf_text.combine_segments( truncated_segments, start_of_sequence_id=self._cls_token, end_of_segment_id=self._sep_token) def _bert_preprocess(self, record: Mapping[str, tf.Tensor]): """Parses raw tensors into a dict of tensors to be consumed by the model.""" if self._use_next_sentence_label: input_text = record[self._params.text_field_names[0]] # Split sentences sentence_breaker = tf_text.RegexSplitter() sentences = sentence_breaker.split(input_text) # Extract next-sentence-prediction labels and segments next_or_random_segment, is_next = ( segment_extractor.get_next_sentence_labels(sentences)) # merge dims to change shape from [num_docs, (num_segments)] to # [total_num_segments] is_next = is_next.merge_dims(-2, -1) # construct segments with shape [(num_sentence)] segments = [ sentences.merge_dims(-2, -1), next_or_random_segment.merge_dims(-2, -1) ] else: segments = [record[name] for name in self._params.text_field_names] segments_combined, segment_ids = self._tokenize(segments) # Dynamic masking item_selector = tf_text.RandomItemSelector( self._max_predictions_per_seq, selection_rate=self._masking_rate, unselectable_ids=[self._cls_token, self._sep_token], shuffle_fn=(tf.identity if self._params.deterministic else None)) values_chooser = tf_text.MaskValuesChooser( vocab_size=self._vocab_size, mask_token=self._mask_token) masked_input_ids, masked_lm_positions, masked_lm_ids = ( tf_text.mask_language_model( segments_combined, item_selector=item_selector, mask_values_chooser=values_chooser, )) # Pad out to fixed shape and get input mask. seq_lengths = { "input_word_ids": self._seq_length, "input_type_ids": self._seq_length, "masked_lm_positions": self._max_predictions_per_seq, "masked_lm_ids": self._max_predictions_per_seq, } model_inputs = { "input_word_ids": masked_input_ids, "input_type_ids": segment_ids, "masked_lm_positions": masked_lm_positions, "masked_lm_ids": masked_lm_ids, } padded_inputs_and_mask = tf.nest.map_structure(tf_text.pad_model_inputs, model_inputs, seq_lengths) model_inputs = { k: padded_inputs_and_mask[k][0] for k in padded_inputs_and_mask } model_inputs["masked_lm_weights"] = tf.cast( padded_inputs_and_mask["masked_lm_ids"][1], tf.float32) model_inputs["input_mask"] = padded_inputs_and_mask["input_word_ids"][1] if self._use_next_sentence_label: model_inputs["next_sentence_labels"] = is_next for name in model_inputs: t = model_inputs[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) model_inputs[name] = t return model_inputs def load(self, input_context: Optional[tf.distribute.InputContext] = None): """Returns a tf.dataset.Dataset.""" def _batch_docs(dataset, input_context): per_core_doc_batch_size = ( input_context.get_per_replica_batch_size(self._params.doc_batch_size) if input_context else self._params.doc_batch_size) return dataset.batch(per_core_doc_batch_size) reader = input_reader.InputReader( params=self._params, dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type), decoder_fn=self._decode if self._params.input_path else None, transform_and_batch_fn=_batch_docs if self._use_next_sentence_label else None, postprocess_fn=self._bert_preprocess) transformed_inputs = reader.read(input_context) per_core_example_batch_size = ( input_context.get_per_replica_batch_size(self._params.global_batch_size) if input_context else self._params.global_batch_size) batched_inputs = transformed_inputs.unbatch().batch( per_core_example_batch_size, self._params.drop_remainder) return batched_inputs.prefetch(tf.data.experimental.AUTOTUNE)