# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for mixing.py.""" import numpy as np import tensorflow as tf, tf_keras from official.nlp.modeling.layers import mixing class MixingTest(tf.test.TestCase): def test_base_mixing_layer(self): inputs = tf.random.uniform((3, 8, 16), minval=0, maxval=10, dtype=tf.float32) with self.assertRaisesRegex(NotImplementedError, "Abstract method"): _ = mixing.MixingLayer()(query=inputs, value=inputs) def test_fourier_layer(self): batch_size = 4 max_seq_length = 8 hidden_dim = 16 inputs = tf.random.uniform((batch_size, max_seq_length, hidden_dim), minval=0, maxval=10, dtype=tf.float32) outputs = mixing.FourierTransformLayer(use_fft=True)( query=inputs, value=inputs) self.assertEqual(outputs.shape, (batch_size, max_seq_length, hidden_dim)) def test_hartley_layer(self): batch_size = 3 max_seq_length = 16 hidden_dim = 4 inputs = tf.random.uniform((batch_size, max_seq_length, hidden_dim), minval=0, maxval=12, dtype=tf.float32) outputs = mixing.HartleyTransformLayer(use_fft=True)( query=inputs, value=inputs) self.assertEqual(outputs.shape, (batch_size, max_seq_length, hidden_dim)) def test_linear_mixing_layer(self): batch_size = 2 max_seq_length = 4 hidden_dim = 3 inputs = tf.ones((batch_size, max_seq_length, hidden_dim), dtype=tf.float32) outputs = mixing.LinearTransformLayer( kernel_initializer=tf_keras.initializers.Ones())( query=inputs, value=inputs) # hidden_dim * (max_seq_length * 1) = 12. expected_outputs = [ [ [12., 12., 12.], [12., 12., 12.], [12., 12., 12.], [12., 12., 12.], ], [ [12., 12., 12.], [12., 12., 12.], [12., 12., 12.], [12., 12., 12.], ], ] np.testing.assert_allclose(outputs, expected_outputs, rtol=1e-6, atol=1e-6) def test_pick_fourier_transform(self): # Ensure we don't hit an edge case which exceeds the fixed numerical error. tf.random.set_seed(1) np.random.seed(1) batch_size = 3 max_seq_length = 4 hidden_dim = 8 fft = mixing._pick_fourier_transform( use_fft=True, max_seq_length=max_seq_length, hidden_dim=hidden_dim) dft_matmul = mixing._pick_fourier_transform( use_fft=False, max_seq_length=max_seq_length, hidden_dim=hidden_dim) inputs = tf.random.uniform([batch_size, max_seq_length, hidden_dim]) inputs = tf.cast(inputs, tf.complex64) np.testing.assert_allclose( fft(inputs), dft_matmul(inputs), rtol=1e-6, atol=1e-6) if __name__ == "__main__": tf.test.main()