# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for routing.""" from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from official.nlp.modeling.layers import routing class TokenImportanceTest(tf.test.TestCase, parameterized.TestCase): def test_token_importance(self): token_importance_embed = routing.TokenImportanceWithMovingAvg( vocab_size=4, init_importance=10.0, moving_average_beta=0.995) importance = token_importance_embed(np.array([[0, 1], [2, 3]])) self.assertAllClose(importance, np.array([[10.0, 10.0], [10.0, 10.0]])) token_importance_embed.update_token_importance( token_ids=np.array([[0, 1]]), importance=np.array([[0.0, 0.0]])) importance = token_importance_embed(np.array([[0, 1], [2, 3]])) self.assertAllClose(importance, np.array([[9.95, 9.95], [10.0, 10.0]])) class TopKSelectionTest(tf.test.TestCase, parameterized.TestCase): def test_top_k_selection(self): token_selection = routing.SelectTopK(top_k=2) selected, _ = token_selection(np.array([[0, 1, 2, 3], [4, 3, 2, 1]])) self.assertAllClose(selected, np.array([[3, 2], [0, 1]])) def test_random_k_selection(self): token_selection = routing.SelectTopK(random_k=2) selected, _ = token_selection(np.array([[0, 1, 2, 3], [4, 3, 2, 1]])) self.assertAllClose(selected.shape, (2, 2)) def test_top_k_random_k(self): token_selection = routing.SelectTopK(top_k=1, random_k=1) selected, _ = token_selection(np.array([[0, 1, 2, 3], [4, 3, 2, 1]])) self.assertAllClose(selected.shape, (2, 2)) if __name__ == "__main__": tf.test.main()