# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for box_matcher.py.""" import tensorflow as tf, tf_keras from official.vision.ops import box_matcher class BoxMatcherTest(tf.test.TestCase): def test_box_matcher_unbatched(self): sim_matrix = tf.constant( [[0.04, 0, 0, 0], [0, 0, 1., 0]], dtype=tf.float32) fg_threshold = 0.5 bg_thresh_hi = 0.2 bg_thresh_lo = 0.0 matcher = box_matcher.BoxMatcher( thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold], indicators=[-3, -2, -1, 1]) match_indices, match_indicators = matcher(sim_matrix) positive_matches = tf.greater_equal(match_indicators, 0) negative_matches = tf.equal(match_indicators, -2) self.assertAllEqual( positive_matches.numpy(), [False, True]) self.assertAllEqual( negative_matches.numpy(), [True, False]) self.assertAllEqual( match_indices.numpy(), [0, 2]) self.assertAllEqual( match_indicators.numpy(), [-2, 1]) def test_box_matcher_batched(self): sim_matrix = tf.constant( [[[0.04, 0, 0, 0], [0, 0, 1., 0]]], dtype=tf.float32) fg_threshold = 0.5 bg_thresh_hi = 0.2 bg_thresh_lo = 0.0 matcher = box_matcher.BoxMatcher( thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold], indicators=[-3, -2, -1, 1]) match_indices, match_indicators = matcher(sim_matrix) positive_matches = tf.greater_equal(match_indicators, 0) negative_matches = tf.equal(match_indicators, -2) self.assertAllEqual( positive_matches.numpy(), [[False, True]]) self.assertAllEqual( negative_matches.numpy(), [[True, False]]) self.assertAllEqual( match_indices.numpy(), [[0, 2]]) self.assertAllEqual( match_indicators.numpy(), [[-2, 1]]) if __name__ == '__main__': tf.test.main()