# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for mask_ops.py.""" # Import libraries import numpy as np import tensorflow as tf, tf_keras from official.vision.ops import mask_ops class MaskUtilsTest(tf.test.TestCase): def testPasteInstanceMasks(self): image_height = 10 image_width = 10 mask_height = 6 mask_width = 6 masks = np.random.randint(0, 255, (1, mask_height, mask_width)) detected_boxes = np.array([[0.0, 2.0, mask_width, mask_height]]) _ = mask_ops.paste_instance_masks( masks, detected_boxes, image_height, image_width) def testPasteInstanceMasksV2(self): image_height = 10 image_width = 10 mask_height = 6 mask_width = 6 masks = np.random.randint(0, 255, (1, mask_height, mask_width)) detected_boxes = np.array([[0.0, 2.0, mask_width, mask_height]]) image_masks = mask_ops.paste_instance_masks_v2( masks, detected_boxes, image_height, image_width) self.assertNDArrayNear( image_masks[:, 2:8, 0:6], np.array(masks > 0.5, dtype=np.uint8), 1e-5) def testInstanceMasksOverlap(self): boxes = tf.constant([[[0, 0, 4, 4], [1, 1, 5, 5]]]) masks = tf.constant([[ [ [0.9, 0.8, 0.1, 0.2], [0.8, 0.7, 0.3, 0.2], [0.6, 0.7, 0.4, 0.3], [1.0, 0.7, 0.1, 0.0], ], [ [0.9, 0.8, 0.8, 0.7], [0.8, 0.7, 0.6, 0.8], [0.1, 0.2, 0.4, 0.3], [0.2, 0.1, 0.1, 0.0], ], ]]) gt_boxes = tf.constant([[[1, 1, 5, 5], [2, 2, 6, 6]]]) gt_masks = tf.constant([[ [ [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], ], [ [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], ], ]]) iou, ioa = mask_ops.instance_masks_overlap( boxes, masks, gt_boxes, gt_masks, output_size=[10, 10], ) self.assertAllClose(iou, [[[1 / 3, 0], [1 / 5, 1 / 7]]], atol=1e-4) self.assertAllClose(ioa, [[[3 / 8, 0], [1 / 4, 3 / 8]]], atol=1e-4) if __name__ == '__main__': tf.test.main()