# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ELECTRA model configurations and instantiation methods.""" from typing import List import dataclasses from official.modeling.hyperparams import base_config from official.nlp.configs import bert from official.nlp.configs import encoders @dataclasses.dataclass class ElectraPretrainerConfig(base_config.Config): """ELECTRA pretrainer configuration.""" num_masked_tokens: int = 76 sequence_length: int = 512 num_classes: int = 2 discriminator_loss_weight: float = 50.0 tie_embeddings: bool = True disallow_correct: bool = False generator_encoder: encoders.EncoderConfig = dataclasses.field( default_factory=encoders.EncoderConfig ) discriminator_encoder: encoders.EncoderConfig = dataclasses.field( default_factory=encoders.EncoderConfig ) cls_heads: List[bert.ClsHeadConfig] = dataclasses.field(default_factory=list)