# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ELECTRA pretraining task (Joint Masked LM and Replaced Token Detection).""" import dataclasses import tensorflow as tf, tf_keras from official.core import base_task from official.core import config_definitions as cfg from official.core import task_factory from official.modeling import tf_utils from official.nlp.configs import bert from official.nlp.configs import electra from official.nlp.configs import encoders from official.nlp.data import pretrain_dataloader from official.nlp.modeling import layers from official.nlp.modeling import models @dataclasses.dataclass class ElectraPretrainConfig(cfg.TaskConfig): """The model config.""" model: electra.ElectraPretrainerConfig = dataclasses.field( default_factory=lambda: electra.ElectraPretrainerConfig( # pylint: disable=g-long-lambda cls_heads=[ bert.ClsHeadConfig( inner_dim=768, num_classes=2, dropout_rate=0.1, name='next_sentence', ) ] ) ) train_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig) validation_data: cfg.DataConfig = dataclasses.field( default_factory=cfg.DataConfig ) def _build_pretrainer( config: electra.ElectraPretrainerConfig) -> models.ElectraPretrainer: """Instantiates ElectraPretrainer from the config.""" generator_encoder_cfg = config.generator_encoder discriminator_encoder_cfg = config.discriminator_encoder # Copy discriminator's embeddings to generator for easier model serialization. discriminator_network = encoders.build_encoder(discriminator_encoder_cfg) if config.tie_embeddings: embedding_layer = discriminator_network.get_embedding_layer() generator_network = encoders.build_encoder( generator_encoder_cfg, embedding_layer=embedding_layer) else: generator_network = encoders.build_encoder(generator_encoder_cfg) generator_encoder_cfg = generator_encoder_cfg.get() return models.ElectraPretrainer( generator_network=generator_network, discriminator_network=discriminator_network, vocab_size=generator_encoder_cfg.vocab_size, num_classes=config.num_classes, sequence_length=config.sequence_length, num_token_predictions=config.num_masked_tokens, mlm_activation=tf_utils.get_activation( generator_encoder_cfg.hidden_activation), mlm_initializer=tf_keras.initializers.TruncatedNormal( stddev=generator_encoder_cfg.initializer_range), classification_heads=[ layers.ClassificationHead(**cfg.as_dict()) for cfg in config.cls_heads ], disallow_correct=config.disallow_correct) @task_factory.register_task_cls(ElectraPretrainConfig) class ElectraPretrainTask(base_task.Task): """ELECTRA Pretrain Task (Masked LM + Replaced Token Detection).""" def build_model(self): return _build_pretrainer(self.task_config.model) def build_losses(self, labels, model_outputs, metrics, aux_losses=None) -> tf.Tensor: metrics = dict([(metric.name, metric) for metric in metrics]) # generator lm and (optional) nsp loss. lm_prediction_losses = tf_keras.losses.sparse_categorical_crossentropy( labels['masked_lm_ids'], tf.cast(model_outputs['lm_outputs'], tf.float32), from_logits=True) lm_label_weights = labels['masked_lm_weights'] lm_numerator_loss = tf.reduce_sum(lm_prediction_losses * lm_label_weights) lm_denominator_loss = tf.reduce_sum(lm_label_weights) mlm_loss = tf.math.divide_no_nan(lm_numerator_loss, lm_denominator_loss) metrics['lm_example_loss'].update_state(mlm_loss) if 'next_sentence_labels' in labels: sentence_labels = labels['next_sentence_labels'] sentence_outputs = tf.cast( model_outputs['sentence_outputs'], dtype=tf.float32) sentence_loss = tf_keras.losses.sparse_categorical_crossentropy( sentence_labels, sentence_outputs, from_logits=True) metrics['next_sentence_loss'].update_state(sentence_loss) total_loss = mlm_loss + sentence_loss else: total_loss = mlm_loss # discriminator replaced token detection (rtd) loss. rtd_logits = model_outputs['disc_logits'] rtd_labels = tf.cast(model_outputs['disc_label'], tf.float32) input_mask = tf.cast(labels['input_mask'], tf.float32) rtd_ind_loss = tf.nn.sigmoid_cross_entropy_with_logits( logits=rtd_logits, labels=rtd_labels) rtd_numerator = tf.reduce_sum(input_mask * rtd_ind_loss) rtd_denominator = tf.reduce_sum(input_mask) rtd_loss = tf.math.divide_no_nan(rtd_numerator, rtd_denominator) metrics['discriminator_loss'].update_state(rtd_loss) total_loss = total_loss + \ self.task_config.model.discriminator_loss_weight * rtd_loss if aux_losses: total_loss += tf.add_n(aux_losses) metrics['total_loss'].update_state(total_loss) return total_loss def build_inputs(self, params, input_context=None): """Returns tf.data.Dataset for pretraining.""" if params.input_path == 'dummy': def dummy_data(_): dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32) dummy_lm = tf.zeros((1, params.max_predictions_per_seq), dtype=tf.int32) return dict( input_word_ids=dummy_ids, input_mask=dummy_ids, input_type_ids=dummy_ids, masked_lm_positions=dummy_lm, masked_lm_ids=dummy_lm, masked_lm_weights=tf.cast(dummy_lm, dtype=tf.float32), next_sentence_labels=tf.zeros((1, 1), dtype=tf.int32)) dataset = tf.data.Dataset.range(1) dataset = dataset.repeat() dataset = dataset.map( dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset return pretrain_dataloader.BertPretrainDataLoader(params).load( input_context) def build_metrics(self, training=None): del training metrics = [ tf_keras.metrics.SparseCategoricalAccuracy(name='masked_lm_accuracy'), tf_keras.metrics.Mean(name='lm_example_loss'), tf_keras.metrics.SparseCategoricalAccuracy( name='discriminator_accuracy'), ] if self.task_config.train_data.use_next_sentence_label: metrics.append( tf_keras.metrics.SparseCategoricalAccuracy( name='next_sentence_accuracy')) metrics.append(tf_keras.metrics.Mean(name='next_sentence_loss')) metrics.append(tf_keras.metrics.Mean(name='discriminator_loss')) metrics.append(tf_keras.metrics.Mean(name='total_loss')) return metrics def process_metrics(self, metrics, labels, model_outputs): metrics = dict([(metric.name, metric) for metric in metrics]) if 'masked_lm_accuracy' in metrics: metrics['masked_lm_accuracy'].update_state(labels['masked_lm_ids'], model_outputs['lm_outputs'], labels['masked_lm_weights']) if 'next_sentence_accuracy' in metrics: metrics['next_sentence_accuracy'].update_state( labels['next_sentence_labels'], model_outputs['sentence_outputs']) if 'discriminator_accuracy' in metrics: disc_logits_expanded = tf.expand_dims(model_outputs['disc_logits'], -1) discrim_full_logits = tf.concat( [-1.0 * disc_logits_expanded, disc_logits_expanded], -1) metrics['discriminator_accuracy'].update_state( model_outputs['disc_label'], discrim_full_logits, labels['input_mask']) def train_step(self, inputs, model: tf_keras.Model, optimizer: tf_keras.optimizers.Optimizer, metrics): """Does forward and backward. Args: inputs: a dictionary of input tensors. model: the model, forward pass definition. optimizer: the optimizer for this training step. metrics: a nested structure of metrics objects. Returns: A dictionary of logs. """ with tf.GradientTape() as tape: outputs = model(inputs, training=True) # Computes per-replica loss. loss = self.build_losses( labels=inputs, model_outputs=outputs, metrics=metrics, aux_losses=model.losses) # Scales loss as the default gradients allreduce performs sum inside the # optimizer. scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync tvars = model.trainable_variables grads = tape.gradient(scaled_loss, tvars) optimizer.apply_gradients(list(zip(grads, tvars))) self.process_metrics(metrics, inputs, outputs) return {self.loss: loss} def validation_step(self, inputs, model: tf_keras.Model, metrics): """Validatation step. Args: inputs: a dictionary of input tensors. model: the keras.Model. metrics: a nested structure of metrics objects. Returns: A dictionary of logs. """ outputs = model(inputs, training=False) loss = self.build_losses( labels=inputs, model_outputs=outputs, metrics=metrics, aux_losses=model.losses) self.process_metrics(metrics, inputs, outputs) return {self.loss: loss}