# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for official.nlp.tasks.electra_task.""" import tensorflow as tf, tf_keras from official.nlp.configs import bert from official.nlp.configs import electra from official.nlp.configs import encoders from official.nlp.data import pretrain_dataloader from official.nlp.tasks import electra_task class ElectraPretrainTaskTest(tf.test.TestCase): def test_task(self): config = electra_task.ElectraPretrainConfig( model=electra.ElectraPretrainerConfig( generator_encoder=encoders.EncoderConfig( bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)), discriminator_encoder=encoders.EncoderConfig( bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)), num_masked_tokens=20, sequence_length=128, cls_heads=[ bert.ClsHeadConfig( inner_dim=10, num_classes=2, name="next_sentence") ]), train_data=pretrain_dataloader.BertPretrainDataConfig( input_path="dummy", max_predictions_per_seq=20, seq_length=128, global_batch_size=1)) task = electra_task.ElectraPretrainTask(config) model = task.build_model() metrics = task.build_metrics() dataset = task.build_inputs(config.train_data) iterator = iter(dataset) optimizer = tf_keras.optimizers.SGD(lr=0.1) task.train_step(next(iterator), model, optimizer, metrics=metrics) task.validation_step(next(iterator), model, metrics=metrics) if __name__ == "__main__": tf.test.main()