# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Miscellaneous functions that can be called by models.""" import numbers from absl import logging import tensorflow as tf, tf_keras from tensorflow.python.util import nest # pylint:disable=logging-format-interpolation def past_stop_threshold(stop_threshold, eval_metric): """Return a boolean representing whether a model should be stopped. Args: stop_threshold: float, the threshold above which a model should stop training. eval_metric: float, the current value of the relevant metric to check. Returns: True if training should stop, False otherwise. Raises: ValueError: if either stop_threshold or eval_metric is not a number """ if stop_threshold is None: return False if not isinstance(stop_threshold, numbers.Number): raise ValueError("Threshold for checking stop conditions must be a number.") if not isinstance(eval_metric, numbers.Number): raise ValueError("Eval metric being checked against stop conditions " "must be a number.") if eval_metric >= stop_threshold: logging.info("Stop threshold of {} was passed with metric value {}.".format( stop_threshold, eval_metric)) return True return False def generate_synthetic_data(input_shape, input_value=0, input_dtype=None, label_shape=None, label_value=0, label_dtype=None): """Create a repeating dataset with constant values. Args: input_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of the input data. input_value: Value of each input element. input_dtype: Input dtype. If None, will be inferred by the input value. label_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of the label data. label_value: Value of each input element. label_dtype: Input dtype. If None, will be inferred by the target value. Returns: Dataset of tensors or tuples of tensors (if label_shape is set). """ # TODO(kathywu): Replace with SyntheticDataset once it is in contrib. element = input_element = nest.map_structure( lambda s: tf.constant(input_value, input_dtype, s), input_shape) if label_shape: label_element = nest.map_structure( lambda s: tf.constant(label_value, label_dtype, s), label_shape) element = (input_element, label_element) return tf.data.Dataset.from_tensors(element).repeat() def apply_clean(flags_obj): if flags_obj.clean and tf.io.gfile.exists(flags_obj.model_dir): logging.info("--clean flag set. Removing existing model dir:" " {}".format(flags_obj.model_dir)) tf.io.gfile.rmtree(flags_obj.model_dir)