# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Build classification models.""" from typing import Any, Mapping, Optional # Import libraries import tensorflow as tf, tf_keras layers = tf_keras.layers @tf_keras.utils.register_keras_serializable(package='Vision') class ClassificationModel(tf_keras.Model): """A classification class builder.""" def __init__( self, backbone: tf_keras.Model, num_classes: int, input_specs: tf_keras.layers.InputSpec = layers.InputSpec( shape=[None, None, None, 3]), dropout_rate: float = 0.0, kernel_initializer: str = 'random_uniform', kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None, bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None, add_head_batch_norm: bool = False, use_sync_bn: bool = False, norm_momentum: float = 0.99, norm_epsilon: float = 0.001, skip_logits_layer: bool = False, **kwargs): """Classification initialization function. Args: backbone: a backbone network. num_classes: `int` number of classes in classification task. input_specs: `tf_keras.layers.InputSpec` specs of the input tensor. dropout_rate: `float` rate for dropout regularization. kernel_initializer: kernel initializer for the dense layer. kernel_regularizer: tf_keras.regularizers.Regularizer object. Default to None. bias_regularizer: tf_keras.regularizers.Regularizer object. Default to None. add_head_batch_norm: `bool` whether to add a batch normalization layer before pool. use_sync_bn: `bool` if True, use synchronized batch normalization. norm_momentum: `float` normalization momentum for the moving average. norm_epsilon: `float` small float added to variance to avoid dividing by zero. skip_logits_layer: `bool`, whether to skip the prediction layer. **kwargs: keyword arguments to be passed. """ norm = tf_keras.layers.BatchNormalization axis = -1 if tf_keras.backend.image_data_format() == 'channels_last' else 1 inputs = tf_keras.Input(shape=input_specs.shape[1:], name=input_specs.name) endpoints = backbone(inputs) x = endpoints[max(endpoints.keys())] if add_head_batch_norm: x = norm( axis=axis, momentum=norm_momentum, epsilon=norm_epsilon, synchronized=use_sync_bn, )(x) # Depending on the backbone type, backbone's output can be # [batch_size, height, weight, channel_size] or # [batch_size, token_size, hidden_size]. if len(x.shape) == 4: x = tf_keras.layers.GlobalAveragePooling2D()(x) elif len(x.shape) == 3: x = tf_keras.layers.GlobalAveragePooling1D()(x) if not skip_logits_layer: x = tf_keras.layers.Dropout(dropout_rate)(x) x = tf_keras.layers.Dense( num_classes, kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer)( x) super(ClassificationModel, self).__init__( inputs=inputs, outputs=x, **kwargs) self._config_dict = { 'backbone': backbone, 'num_classes': num_classes, 'input_specs': input_specs, 'dropout_rate': dropout_rate, 'kernel_initializer': kernel_initializer, 'kernel_regularizer': kernel_regularizer, 'bias_regularizer': bias_regularizer, 'add_head_batch_norm': add_head_batch_norm, 'use_sync_bn': use_sync_bn, 'norm_momentum': norm_momentum, 'norm_epsilon': norm_epsilon, } self._input_specs = input_specs self._kernel_regularizer = kernel_regularizer self._bias_regularizer = bias_regularizer self._backbone = backbone self._norm = norm @property def checkpoint_items(self) -> Mapping[str, tf_keras.Model]: """Returns a dictionary of items to be additionally checkpointed.""" return dict(backbone=self.backbone) @property def backbone(self) -> tf_keras.Model: return self._backbone def get_config(self) -> Mapping[str, Any]: return self._config_dict @classmethod def from_config(cls, config, custom_objects=None): return cls(**config)