# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains definitions of mask sampler.""" # Import libraries import tensorflow as tf, tf_keras from official.vision.ops import spatial_transform_ops def _sample_and_crop_foreground_masks(candidate_rois: tf.Tensor, candidate_gt_boxes: tf.Tensor, candidate_gt_classes: tf.Tensor, candidate_gt_indices: tf.Tensor, gt_masks: tf.Tensor, num_sampled_masks: int = 128, mask_target_size: int = 28): """Samples and creates cropped foreground masks for training. Args: candidate_rois: A `tf.Tensor` of shape of [batch_size, N, 4], where N is the number of candidate RoIs to be considered for mask sampling. It includes both positive and negative RoIs. The `num_mask_samples_per_image` positive RoIs will be sampled to create mask training targets. candidate_gt_boxes: A `tf.Tensor` of shape of [batch_size, N, 4], storing the corresponding groundtruth boxes to the `candidate_rois`. candidate_gt_classes: A `tf.Tensor` of shape of [batch_size, N], storing the corresponding groundtruth classes to the `candidate_rois`. 0 in the tensor corresponds to the background class, i.e. negative RoIs. candidate_gt_indices: A `tf.Tensor` of shape [batch_size, N], storing the corresponding groundtruth instance indices to the `candidate_gt_boxes`, i.e. gt_boxes[candidate_gt_indices[:, i]] = candidate_gt_boxes[:, i] and gt_boxes which is of shape [batch_size, MAX_INSTANCES, 4], M >= N, is the superset of candidate_gt_boxes. gt_masks: A `tf.Tensor` of [batch_size, MAX_INSTANCES, mask_height, mask_width] containing all the groundtruth masks which sample masks are drawn from. num_sampled_masks: An `int` that specifies the number of masks to sample. mask_target_size: An `int` that specifies the final cropped mask size after sampling. The output masks are resized w.r.t the sampled RoIs. Returns: foreground_rois: A `tf.Tensor` of shape of [batch_size, K, 4] storing the RoI that corresponds to the sampled foreground masks, where K = num_mask_samples_per_image. foreground_classes: A `tf.Tensor` of shape of [batch_size, K] storing the classes corresponding to the sampled foreground masks. cropoped_foreground_masks: A `tf.Tensor` of shape of [batch_size, K, mask_target_size, mask_target_size] storing the cropped foreground masks used for training. """ _, fg_instance_indices = tf.nn.top_k( tf.cast(tf.greater(candidate_gt_classes, 0), dtype=tf.int32), k=num_sampled_masks) fg_instance_indices_shape = tf.shape(fg_instance_indices) batch_indices = ( tf.expand_dims(tf.range(fg_instance_indices_shape[0]), axis=-1) * tf.ones([1, fg_instance_indices_shape[-1]], dtype=tf.int32)) gather_nd_instance_indices = tf.stack( [batch_indices, fg_instance_indices], axis=-1) foreground_rois = tf.gather_nd( candidate_rois, gather_nd_instance_indices) foreground_boxes = tf.gather_nd( candidate_gt_boxes, gather_nd_instance_indices) foreground_classes = tf.gather_nd( candidate_gt_classes, gather_nd_instance_indices) foreground_gt_indices = tf.gather_nd( candidate_gt_indices, gather_nd_instance_indices) foreground_gt_indices = tf.where( tf.equal(foreground_gt_indices, -1), tf.zeros_like(foreground_gt_indices), foreground_gt_indices) foreground_gt_indices_shape = tf.shape(foreground_gt_indices) batch_indices = ( tf.expand_dims(tf.range(foreground_gt_indices_shape[0]), axis=-1) * tf.ones([1, foreground_gt_indices_shape[-1]], dtype=tf.int32)) gather_nd_gt_indices = tf.stack( [batch_indices, foreground_gt_indices], axis=-1) foreground_masks = tf.gather_nd(gt_masks, gather_nd_gt_indices) cropped_foreground_masks = spatial_transform_ops.crop_mask_in_target_box( foreground_masks, foreground_boxes, foreground_rois, mask_target_size, sample_offset=0.5) return foreground_rois, foreground_classes, cropped_foreground_masks @tf_keras.utils.register_keras_serializable(package='Vision') class MaskSampler(tf_keras.layers.Layer): """Samples and creates mask training targets.""" def __init__(self, mask_target_size: int, num_sampled_masks: int, **kwargs): self._config_dict = { 'mask_target_size': mask_target_size, 'num_sampled_masks': num_sampled_masks, } super(MaskSampler, self).__init__(**kwargs) def call(self, candidate_rois: tf.Tensor, candidate_gt_boxes: tf.Tensor, candidate_gt_classes: tf.Tensor, candidate_gt_indices: tf.Tensor, gt_masks: tf.Tensor): """Samples and creates mask targets for training. Args: candidate_rois: A `tf.Tensor` of shape of [batch_size, N, 4], where N is the number of candidate RoIs to be considered for mask sampling. It includes both positive and negative RoIs. The `num_mask_samples_per_image` positive RoIs will be sampled to create mask training targets. candidate_gt_boxes: A `tf.Tensor` of shape of [batch_size, N, 4], storing the corresponding groundtruth boxes to the `candidate_rois`. candidate_gt_classes: A `tf.Tensor` of shape of [batch_size, N], storing the corresponding groundtruth classes to the `candidate_rois`. 0 in the tensor corresponds to the background class, i.e. negative RoIs. candidate_gt_indices: A `tf.Tensor` of shape [batch_size, N], storing the corresponding groundtruth instance indices to the `candidate_gt_boxes`, i.e. gt_boxes[candidate_gt_indices[:, i]] = candidate_gt_boxes[:, i], where gt_boxes which is of shape [batch_size, MAX_INSTANCES, 4], M >= N, is the superset of candidate_gt_boxes. gt_masks: A `tf.Tensor` of [batch_size, MAX_INSTANCES, mask_height, mask_width] containing all the groundtruth masks which sample masks are drawn from. after sampling. The output masks are resized w.r.t the sampled RoIs. Returns: foreground_rois: A `tf.Tensor` of shape of [batch_size, K, 4] storing the RoI that corresponds to the sampled foreground masks, where K = num_mask_samples_per_image. foreground_classes: A `tf.Tensor` of shape of [batch_size, K] storing the classes corresponding to the sampled foreground masks. cropoped_foreground_masks: A `tf.Tensor` of shape of [batch_size, K, mask_target_size, mask_target_size] storing the cropped foreground masks used for training. """ foreground_rois, foreground_classes, cropped_foreground_masks = ( _sample_and_crop_foreground_masks( candidate_rois, candidate_gt_boxes, candidate_gt_classes, candidate_gt_indices, gt_masks, self._config_dict['num_sampled_masks'], self._config_dict['mask_target_size'])) return foreground_rois, foreground_classes, cropped_foreground_masks def get_config(self): return self._config_dict @classmethod def from_config(cls, config): return cls(**config)