# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Definition of target gather, which gathers targets from indices.""" import tensorflow as tf, tf_keras class TargetGather: """Targer gather for dense object detector.""" def __call__(self, labels, match_indices, mask=None, mask_val=0.0): """Labels anchors with ground truth inputs. B: batch_size N: number of groundtruth boxes. Args: labels: An integer tensor with shape [N, dims] or [B, N, ...] representing groundtruth labels. match_indices: An integer tensor with shape [M] or [B, M] representing match label index. mask: An boolean tensor with shape [M, dims] or [B, M,...] representing match labels. mask_val: An integer to fill in for mask. Returns: target: An integer Tensor with shape [M] or [B, M] Raises: ValueError: If `labels` is higher than rank 3. """ if len(labels.shape) <= 2: return self._gather_unbatched(labels, match_indices, mask, mask_val) elif len(labels.shape) == 3: return self._gather_batched(labels, match_indices, mask, mask_val) else: raise ValueError("`TargetGather` does not support `labels` with rank " "larger than 3, got {}".format(len(labels.shape))) def _gather_unbatched(self, labels, match_indices, mask, mask_val): """Gather based on unbatched labels and boxes.""" num_gt_boxes = tf.shape(labels)[0] def _assign_when_rows_empty(): if len(labels.shape) > 1: mask_shape = [match_indices.shape[0], labels.shape[-1]] else: mask_shape = [match_indices.shape[0]] return tf.cast(mask_val, labels.dtype) * tf.ones( mask_shape, dtype=labels.dtype) def _assign_when_rows_not_empty(): targets = tf.gather(labels, match_indices) if mask is None: return targets else: masked_targets = tf.cast(mask_val, labels.dtype) * tf.ones_like( mask, dtype=labels.dtype) return tf.where(mask, masked_targets, targets) return tf.cond(tf.greater(num_gt_boxes, 0), _assign_when_rows_not_empty, _assign_when_rows_empty) def _gather_batched(self, labels, match_indices, mask, mask_val): """Gather based on batched labels.""" batch_size = labels.shape[0] if batch_size == 1: if mask is not None: result = self._gather_unbatched( tf.squeeze(labels, axis=0), tf.squeeze(match_indices, axis=0), tf.squeeze(mask, axis=0), mask_val) else: result = self._gather_unbatched( tf.squeeze(labels, axis=0), tf.squeeze(match_indices, axis=0), None, mask_val) return tf.expand_dims(result, axis=0) else: indices_shape = tf.shape(match_indices) indices_dtype = match_indices.dtype batch_indices = (tf.expand_dims( tf.range(indices_shape[0], dtype=indices_dtype), axis=-1) * tf.ones([1, indices_shape[-1]], dtype=indices_dtype)) gather_nd_indices = tf.stack( [batch_indices, match_indices], axis=-1) targets = tf.gather_nd(labels, gather_nd_indices) if mask is None: return targets else: masked_targets = tf.cast(mask_val, labels.dtype) * tf.ones_like( mask, dtype=labels.dtype) return tf.where(mask, masked_targets, targets)