File size: 9,010 Bytes
50e5fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from collections import Counter

import numpy as np
import pandas as pd
import plotly.express as px
import streamlit as st
from datasets import load_dataset
from matplotlib import pyplot as plt
from matplotlib_venn import venn2, venn3
from ngram import get_tuples_manual_sentences
from rich import print as rprint

from bigbio.dataloader import BigBioConfigHelpers

# from matplotlib_venn_wordcloud import venn2_wordcloud, venn3_wordcloud


# vanilla tokenizer
def tokenizer(text, counter):
    if not text:
        return text, []
    text = text.strip()
    text = text.replace("\t", "")
    text = text.replace("\n", "")
    # split
    text_list = text.split(" ")
    return text, text_list


def norm(lengths):
    mu = np.mean(lengths)
    sigma = np.std(lengths)
    return mu, sigma


def load_helper():
    conhelps = BigBioConfigHelpers()
    conhelps = conhelps.filtered(lambda x: x.dataset_name != "pubtator_central")
    conhelps = conhelps.filtered(lambda x: x.is_bigbio_schema)
    conhelps = conhelps.filtered(lambda x: not x.is_local)
    rprint(
        "loaded {} configs from {} datasets".format(
            len(conhelps),
            len(set([helper.dataset_name for helper in conhelps])),
        )
    )
    return conhelps


_TEXT_MAPS = {
    "bigbio_kb": ["text"],
    "bigbio_text": ["text"],
    "bigbio_qa": ["question", "context"],
    "bigbio_te": ["premise", "hypothesis"],
    "bigbio_tp": ["text_1", "text_2"],
    "bigbio_pairs": ["text_1", "text_2"],
    "bigbio_t2t": ["text_1", "text_2"],
}

IBM_COLORS = [
    "#648fff",
    "#dc267f",
    "#ffb000",
    "#fe6100",
    "#785ef0",
    "#000000",
    "#ffffff",
]

N = 3


def token_length_per_entry(entry, schema, counter):
    result = {}
    if schema == "bigbio_kb":
        for passage in entry["passages"]:
            result_key = passage["type"]
            for key in _TEXT_MAPS[schema]:
                text = passage[key][0]
                sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
                toks = [tok for sent in sents for tok in sent]
                tups = ["_".join(tup) for tup in ngrams]
                counter.update(tups)
                result[result_key] = len(toks)
    else:
        for key in _TEXT_MAPS[schema]:
            text = entry[key]
            sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
            toks = [tok for sent in sents for tok in sent]
            result[key] = len(toks)
            tups = ["_".join(tup) for tup in ngrams]
            counter.update(tups)
    return result, counter


def parse_token_length_and_n_gram(dataset, data_config, st=None):
    hist_data = []
    n_gram_counters = []
    rprint(data_config)
    for split, data in dataset.items():
        my_bar = st.progress(0)
        total = len(data)
        n_gram_counter = Counter()
        for i, entry in enumerate(data):
            my_bar.progress(int(i / total * 100))
            result, n_gram_counter = token_length_per_entry(
                entry, data_config.schema, n_gram_counter
            )
            result["total_token_length"] = sum([v for k, v in result.items()])
            result["split"] = split
            hist_data.append(result)
        # remove single count
        # n_gram_counter = Counter({x: count for x, count in n_gram_counter.items() if count > 1})
        n_gram_counters.append(n_gram_counter)
        my_bar.empty()
    st.write("token lengths complete!")

    return pd.DataFrame(hist_data), n_gram_counters


def center_title(fig):
    fig.update_layout(
        title={"y": 0.9, "x": 0.5, "xanchor": "center", "yanchor": "top"},
        font=dict(
            size=18,
        ),
    )
    return fig


def draw_histogram(hist_data, col_name, st=None):
    fig = px.histogram(
        hist_data,
        x=col_name,
        color="split",
        color_discrete_sequence=IBM_COLORS,
        marginal="box",  # or violin, rug
        barmode="group",
        hover_data=hist_data.columns,
        histnorm="probability",
        nbins=20,
        title=f"{col_name} distribution by split",
    )

    st.plotly_chart(center_title(fig), use_container_width=True)


def draw_bar(bar_data, x, y, st=None):
    fig = px.bar(
        bar_data,
        x=x,
        y=y,
        color="split",
        color_discrete_sequence=IBM_COLORS,
        # marginal="box",  # or violin, rug
        barmode="group",
        hover_data=bar_data.columns,
        title=f"{y} distribution by split",
    )
    st.plotly_chart(center_title(fig), use_container_width=True)


def parse_metrics(metadata, st=None):
    for k, m in metadata.items():
        mattrs = m.__dict__
        for m, attr in mattrs.items():
            if type(attr) == int and attr > 0:
                st.metric(label=f"{k}-{m}", value=attr)


def parse_counters(metadata):
    metadata = metadata["train"]  # using the training counter to fetch the names
    counters = []
    for k, v in metadata.__dict__.items():
        if "counter" in k and len(v) > 0:
            counters.append(k)
    return counters


# generate the df for histogram
def parse_label_counter(metadata, counter_type):
    hist_data = []
    for split, m in metadata.items():
        metadata_counter = getattr(m, counter_type)
        for k, v in metadata_counter.items():
            row = {}
            row["labels"] = k
            row[counter_type] = v
            row["split"] = split
            hist_data.append(row)
    return pd.DataFrame(hist_data)


if __name__ == "__main__":
    # load helpers
    conhelps = load_helper()
    configs_set = set()

    for conhelper in conhelps:
        configs_set.add(conhelper.dataset_name)
    # st.write(sorted(configs_set))

    # setup page, sidebar, columns
    st.set_page_config(layout="wide")
    s = st.session_state
    if not s:
        s.pressed_first_button = False
    data_name = st.sidebar.selectbox("dataset", sorted(configs_set))
    st.sidebar.write("you selected:", data_name)
    st.header(f"Dataset stats for {data_name}")

    # setup data configs
    data_helpers = conhelps.for_dataset(data_name)
    data_configs = [d.config for d in data_helpers]
    data_config_names = [d.config.name for d in data_helpers]
    data_config_name = st.sidebar.selectbox("config", set(data_config_names))

    if st.sidebar.button("fetch") or s.pressed_first_button:
        s.pressed_first_button = True
        helper = conhelps.for_config_name(data_config_name)
        metadata_helper = helper.get_metadata()

        parse_metrics(metadata_helper, st.sidebar)

        # load HF dataset
        data_idx = data_config_names.index(data_config_name)
        data_config = data_configs[data_idx]
        # st.write(data_name)

        dataset = load_dataset(
            f"bigbio/{data_name}", name=data_config_name
        )
        ds = pd.DataFrame(dataset["train"])
        st.write(ds)
        # general token length
        tok_hist_data, ngram_counters = parse_token_length_and_n_gram(
            dataset, data_config, st.sidebar
        )
        # draw token distribution
        draw_histogram(tok_hist_data, "total_token_length", st)
        # general counter(s)
        col1, col2 = st.columns([1, 6])
        counters = parse_counters(metadata_helper)
        counter_type = col1.selectbox("counter_type", counters)
        label_df = parse_label_counter(metadata_helper, counter_type)
        label_max = int(label_df[counter_type].max() - 1)
        label_min = int(label_df[counter_type].min())
        filter_value = col1.slider("counter_filter (min, max)", label_min, label_max)
        label_df = label_df[label_df[counter_type] >= filter_value]
        # draw bar chart for counter
        draw_bar(label_df, "labels", counter_type, col2)
        venn_fig, ax = plt.subplots()
        if len(ngram_counters) == 2:
            union_counter = ngram_counters[0] + ngram_counters[1]
            print(ngram_counters[0].most_common(10))
            print(ngram_counters[1].most_common(10))
            total = len(union_counter.keys())
            ngram_counter_sets = [
                set(ngram_counter.keys()) for ngram_counter in ngram_counters
            ]
            venn2(
                ngram_counter_sets,
                dataset.keys(),
                set_colors=IBM_COLORS[:3],
                subset_label_formatter=lambda x: f"{(x/total):1.0%}",
            )
        else:
            union_counter = ngram_counters[0] + ngram_counters[1] + ngram_counters[2]
            total = len(union_counter.keys())
            ngram_counter_sets = [
                set(ngram_counter.keys()) for ngram_counter in ngram_counters
            ]
            venn3(
                ngram_counter_sets,
                dataset.keys(),
                set_colors=IBM_COLORS[:4],
                subset_label_formatter=lambda x: f"{(x/total):1.0%}",
            )
        venn_fig.suptitle(f"{N}-gram intersection for {data_name}", fontsize=20)
        st.pyplot(venn_fig)

    st.sidebar.button("Re-run")