Spaces:
Runtime error
Runtime error
File size: 9,010 Bytes
50e5fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from collections import Counter
import numpy as np
import pandas as pd
import plotly.express as px
import streamlit as st
from datasets import load_dataset
from matplotlib import pyplot as plt
from matplotlib_venn import venn2, venn3
from ngram import get_tuples_manual_sentences
from rich import print as rprint
from bigbio.dataloader import BigBioConfigHelpers
# from matplotlib_venn_wordcloud import venn2_wordcloud, venn3_wordcloud
# vanilla tokenizer
def tokenizer(text, counter):
if not text:
return text, []
text = text.strip()
text = text.replace("\t", "")
text = text.replace("\n", "")
# split
text_list = text.split(" ")
return text, text_list
def norm(lengths):
mu = np.mean(lengths)
sigma = np.std(lengths)
return mu, sigma
def load_helper():
conhelps = BigBioConfigHelpers()
conhelps = conhelps.filtered(lambda x: x.dataset_name != "pubtator_central")
conhelps = conhelps.filtered(lambda x: x.is_bigbio_schema)
conhelps = conhelps.filtered(lambda x: not x.is_local)
rprint(
"loaded {} configs from {} datasets".format(
len(conhelps),
len(set([helper.dataset_name for helper in conhelps])),
)
)
return conhelps
_TEXT_MAPS = {
"bigbio_kb": ["text"],
"bigbio_text": ["text"],
"bigbio_qa": ["question", "context"],
"bigbio_te": ["premise", "hypothesis"],
"bigbio_tp": ["text_1", "text_2"],
"bigbio_pairs": ["text_1", "text_2"],
"bigbio_t2t": ["text_1", "text_2"],
}
IBM_COLORS = [
"#648fff",
"#dc267f",
"#ffb000",
"#fe6100",
"#785ef0",
"#000000",
"#ffffff",
]
N = 3
def token_length_per_entry(entry, schema, counter):
result = {}
if schema == "bigbio_kb":
for passage in entry["passages"]:
result_key = passage["type"]
for key in _TEXT_MAPS[schema]:
text = passage[key][0]
sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
toks = [tok for sent in sents for tok in sent]
tups = ["_".join(tup) for tup in ngrams]
counter.update(tups)
result[result_key] = len(toks)
else:
for key in _TEXT_MAPS[schema]:
text = entry[key]
sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
toks = [tok for sent in sents for tok in sent]
result[key] = len(toks)
tups = ["_".join(tup) for tup in ngrams]
counter.update(tups)
return result, counter
def parse_token_length_and_n_gram(dataset, data_config, st=None):
hist_data = []
n_gram_counters = []
rprint(data_config)
for split, data in dataset.items():
my_bar = st.progress(0)
total = len(data)
n_gram_counter = Counter()
for i, entry in enumerate(data):
my_bar.progress(int(i / total * 100))
result, n_gram_counter = token_length_per_entry(
entry, data_config.schema, n_gram_counter
)
result["total_token_length"] = sum([v for k, v in result.items()])
result["split"] = split
hist_data.append(result)
# remove single count
# n_gram_counter = Counter({x: count for x, count in n_gram_counter.items() if count > 1})
n_gram_counters.append(n_gram_counter)
my_bar.empty()
st.write("token lengths complete!")
return pd.DataFrame(hist_data), n_gram_counters
def center_title(fig):
fig.update_layout(
title={"y": 0.9, "x": 0.5, "xanchor": "center", "yanchor": "top"},
font=dict(
size=18,
),
)
return fig
def draw_histogram(hist_data, col_name, st=None):
fig = px.histogram(
hist_data,
x=col_name,
color="split",
color_discrete_sequence=IBM_COLORS,
marginal="box", # or violin, rug
barmode="group",
hover_data=hist_data.columns,
histnorm="probability",
nbins=20,
title=f"{col_name} distribution by split",
)
st.plotly_chart(center_title(fig), use_container_width=True)
def draw_bar(bar_data, x, y, st=None):
fig = px.bar(
bar_data,
x=x,
y=y,
color="split",
color_discrete_sequence=IBM_COLORS,
# marginal="box", # or violin, rug
barmode="group",
hover_data=bar_data.columns,
title=f"{y} distribution by split",
)
st.plotly_chart(center_title(fig), use_container_width=True)
def parse_metrics(metadata, st=None):
for k, m in metadata.items():
mattrs = m.__dict__
for m, attr in mattrs.items():
if type(attr) == int and attr > 0:
st.metric(label=f"{k}-{m}", value=attr)
def parse_counters(metadata):
metadata = metadata["train"] # using the training counter to fetch the names
counters = []
for k, v in metadata.__dict__.items():
if "counter" in k and len(v) > 0:
counters.append(k)
return counters
# generate the df for histogram
def parse_label_counter(metadata, counter_type):
hist_data = []
for split, m in metadata.items():
metadata_counter = getattr(m, counter_type)
for k, v in metadata_counter.items():
row = {}
row["labels"] = k
row[counter_type] = v
row["split"] = split
hist_data.append(row)
return pd.DataFrame(hist_data)
if __name__ == "__main__":
# load helpers
conhelps = load_helper()
configs_set = set()
for conhelper in conhelps:
configs_set.add(conhelper.dataset_name)
# st.write(sorted(configs_set))
# setup page, sidebar, columns
st.set_page_config(layout="wide")
s = st.session_state
if not s:
s.pressed_first_button = False
data_name = st.sidebar.selectbox("dataset", sorted(configs_set))
st.sidebar.write("you selected:", data_name)
st.header(f"Dataset stats for {data_name}")
# setup data configs
data_helpers = conhelps.for_dataset(data_name)
data_configs = [d.config for d in data_helpers]
data_config_names = [d.config.name for d in data_helpers]
data_config_name = st.sidebar.selectbox("config", set(data_config_names))
if st.sidebar.button("fetch") or s.pressed_first_button:
s.pressed_first_button = True
helper = conhelps.for_config_name(data_config_name)
metadata_helper = helper.get_metadata()
parse_metrics(metadata_helper, st.sidebar)
# load HF dataset
data_idx = data_config_names.index(data_config_name)
data_config = data_configs[data_idx]
# st.write(data_name)
dataset = load_dataset(
f"bigbio/{data_name}", name=data_config_name
)
ds = pd.DataFrame(dataset["train"])
st.write(ds)
# general token length
tok_hist_data, ngram_counters = parse_token_length_and_n_gram(
dataset, data_config, st.sidebar
)
# draw token distribution
draw_histogram(tok_hist_data, "total_token_length", st)
# general counter(s)
col1, col2 = st.columns([1, 6])
counters = parse_counters(metadata_helper)
counter_type = col1.selectbox("counter_type", counters)
label_df = parse_label_counter(metadata_helper, counter_type)
label_max = int(label_df[counter_type].max() - 1)
label_min = int(label_df[counter_type].min())
filter_value = col1.slider("counter_filter (min, max)", label_min, label_max)
label_df = label_df[label_df[counter_type] >= filter_value]
# draw bar chart for counter
draw_bar(label_df, "labels", counter_type, col2)
venn_fig, ax = plt.subplots()
if len(ngram_counters) == 2:
union_counter = ngram_counters[0] + ngram_counters[1]
print(ngram_counters[0].most_common(10))
print(ngram_counters[1].most_common(10))
total = len(union_counter.keys())
ngram_counter_sets = [
set(ngram_counter.keys()) for ngram_counter in ngram_counters
]
venn2(
ngram_counter_sets,
dataset.keys(),
set_colors=IBM_COLORS[:3],
subset_label_formatter=lambda x: f"{(x/total):1.0%}",
)
else:
union_counter = ngram_counters[0] + ngram_counters[1] + ngram_counters[2]
total = len(union_counter.keys())
ngram_counter_sets = [
set(ngram_counter.keys()) for ngram_counter in ngram_counters
]
venn3(
ngram_counter_sets,
dataset.keys(),
set_colors=IBM_COLORS[:4],
subset_label_formatter=lambda x: f"{(x/total):1.0%}",
)
venn_fig.suptitle(f"{N}-gram intersection for {data_name}", fontsize=20)
st.pyplot(venn_fig)
st.sidebar.button("Re-run")
|