Spaces:
Runtime error
Runtime error
File size: 13,350 Bytes
50e5fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
# from matplotlib_venn import venn2, venn3
import json
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.io as pio
from datasets import load_dataset
from plotly.subplots import make_subplots
from rich import print as rprint
from collections import Counter
from ngram import get_tuples_manual_sentences
from bigbio.dataloader import BigBioConfigHelpers
import sys
pio.kaleido.scope.mathjax = None
# vanilla tokenizer
def tokenizer(text, counter):
if not text:
return text, []
text = text.strip()
text = text.replace("\t", "")
text = text.replace("\n", "")
# split
text_list = text.split(" ")
return text, text_list
def norm(lengths):
mu = np.mean(lengths)
sigma = np.std(lengths)
return mu, sigma
def load_helper(local=""):
if local != "":
with open(local, "r") as file:
conhelps = json.load(file)
else:
conhelps = BigBioConfigHelpers()
conhelps = conhelps.filtered(lambda x: x.dataset_name != "pubtator_central")
conhelps = conhelps.filtered(lambda x: x.is_bigbio_schema)
conhelps = conhelps.filtered(lambda x: not x.is_local)
rprint(
"loaded {} configs from {} datasets".format(
len(conhelps),
len(set([helper.dataset_name for helper in conhelps])),
)
)
return conhelps
_TEXT_MAPS = {
"bigbio_kb": ["text"],
"bigbio_text": ["text"],
"bigbio_qa": ["question", "context"],
"bigbio_te": ["premise", "hypothesis"],
"bigbio_tp": ["text_1", "text_2"],
"bigbio_pairs": ["text_1", "text_2"],
"bigbio_t2t": ["text_1", "text_2"],
}
IBM_COLORS = [
"#648fff", # train
"#dc267f", # val
"#ffb000", # test
"#fe6100",
"#785ef0",
"#000000",
"#ffffff",
]
SPLIT_COLOR_MAP = {
"train": "#648fff",
"validation": "#dc267f",
"test": "#ffb000",
}
N = 3
def token_length_per_entry(entry, schema, counter):
result = {}
entry_id = entry['id']
if schema == "bigbio_kb":
for passage in entry["passages"]:
result_key = passage["type"]
for key in _TEXT_MAPS[schema]:
text = passage[key][0]
if not text:
print(f"WARNING: text key does not exist: entry {entry_id}")
result["token_length"] = 0
result["text_type"] = result_key
continue
sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
toks = [tok for sent in sents for tok in sent]
tups = ["_".join(tup) for tup in ngrams]
counter.update(tups)
result["token_length"] = len(toks)
result["text_type"] = result_key
else:
for key in _TEXT_MAPS[schema]:
text = entry[key]
if not text:
print(f"WARNING: text key does not exist, entry {entry_id}")
result["token_length"] = 0
result["text_type"] = key
continue
else:
sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
toks = [tok for sent in sents for tok in sent]
result["token_length"] = len(toks)
result["text_type"] = key
tups = ["_".join(tup) for tup in ngrams]
counter.update(tups)
return result, counter
def parse_token_length_and_n_gram(dataset, schema_type):
hist_data = []
n_gram_counters = []
for split, data in dataset.items():
n_gram_counter = Counter()
for i, entry in enumerate(data):
result, n_gram_counter = token_length_per_entry(
entry, schema_type, n_gram_counter
)
result["split"] = split
hist_data.append(result)
n_gram_counters.append(n_gram_counter)
return pd.DataFrame(hist_data), n_gram_counters
def resolve_splits(df_split):
official_splits = set(df_split).intersection(set(SPLIT_COLOR_MAP.keys()))
return official_splits
def draw_box(df, col_name, row, col, fig):
splits = resolve_splits(df["split"].unique())
for split in splits:
split_count = df.loc[df["split"] == split, col_name].tolist()
print(split)
fig.add_trace(
go.Box(
x=split_count,
name=split,
marker_color=SPLIT_COLOR_MAP[split.split("_")[0]],
),
row=row,
col=col,
)
def draw_bar(df, col_name, y_name, row, col, fig):
splits = resolve_splits(df["split"].unique())
for split in splits:
split_count = df.loc[df["split"] == split, col_name].tolist()
y_list = df.loc[df["split"] == split, y_name].tolist()
fig.add_trace(
go.Bar(
x=split_count,
y=y_list,
name=split,
marker_color=SPLIT_COLOR_MAP[split.split("_")[0]],
showlegend=False,
),
row=row,
col=col,
)
fig.update_traces(orientation="h") # horizontal box plots
def parse_counters(metadata):
metadata = metadata[
list(metadata.keys())[0]
] # using the training counter to fetch the names
counters = []
for k, v in metadata.__dict__.items():
if "counter" in k and len(v) > 0:
counters.append(k)
return counters
# generate the df for histogram
def parse_label_counter(metadata, counter_type):
hist_data = []
for split, m in metadata.items():
metadata_counter = getattr(m, counter_type)
for k, v in metadata_counter.items():
row = {}
row["labels"] = k
row[counter_type] = v
row["split"] = split
hist_data.append(row)
return pd.DataFrame(hist_data)
def gen_latex(dataset_name, helper, splits, schemas, fig_path):
if type(helper.description) is dict:
# TODO hacky, change this to include all decsriptions
descriptions = helper.description[list(helper.description.keys())[0]]
else:
descriptions = helper.description
descriptions = descriptions.replace("\n", "").replace("\t", "")
langs = [l.value for l in helper.languages]
languages = " ".join(langs)
if type(helper.license) is dict:
license = helper.license.value.name
else:
license = helper.license.name
tasks = [" ".join(t.name.lower().split("_")) for t in helper.tasks]
tasks = ", ".join(tasks)
schemas = " ".join([r"{\tt "] + list(schemas) + ["}"]) # TODO \tt
splits = ", ".join(list(splits))
data_name_display = " ".join(data_name.split("_"))
latex_bod = r"\clearpage" + "\n" + r"\section*{" + fr"{data_name_display}" + " Data Card" + r"}" + "\n"
latex_bod += (
r"\begin{figure}[ht!]"
+ "\n"
+ r"\centering"
+ "\n"
+ r"\includegraphics[width=\linewidth]{"
)
latex_bod += f"{fig_path}" + r"}" + "\n"
latex_bod += r"\caption{\label{fig:"
latex_bod += fr"{data_name}" + r"}"
latex_bod += (
r"Token frequency distribution by split (top) and frequency of different kind of instances (bottom).}"
+ "\n"
)
latex_bod += r"\end{figure}" + "\n" + r"\textbf{Dataset Description} "
latex_bod += (
fr"{descriptions}"
+ "\n"
+ r"\textbf{Homepage:} "
+ f"{helper.homepage}"
+ "\n"
+ r"\textbf{URL:} "
+ f"{helper.homepage}" # TODO change this later
+ "\n"
+ r"\textbf{Licensing:} "
+ f"{license}"
+ "\n"
+ r"\textbf{Languages:} "
+ f"{languages}"
+ "\n"
+ r"\textbf{Tasks:} "
+ f"{tasks}"
+ "\n"
+ r"\textbf{Schemas:} "
+ f"{schemas}"
+ "\n"
+ r"\textbf{Splits:} "
+ f"{splits}"
)
return latex_bod
def write_latex(latex_body, latex_name):
text_file = open(f"tex/{latex_name}", "w")
text_file.write(latex_body)
text_file.close()
def draw_figure(data_name, data_config_name, schema_type):
helper = conhelps.for_config_name(data_config_name)
metadata_helper = helper.get_metadata() # calls load_dataset for meta parsing
rprint(metadata_helper)
splits = metadata_helper.keys()
# calls HF load_dataset _again_ for token parsing
dataset = load_dataset(
f"bigbio/biodatasets/{data_name}/{data_name}.py", name=data_config_name
)
# general token length
tok_hist_data, ngram_counters = parse_token_length_and_n_gram(dataset, schema_type)
rprint(helper)
# general counter(s)
# TODO generate the pdf and fix latex
counters = parse_counters(metadata_helper)
print(counters)
rows = len(counters) // 3
if len(counters) >= 3:
# counters = counters[:3]
cols = 3
specs = [[{"colspan": 3}, None, None]] + [[{}, {}, {}]] * (rows + 1)
elif len(counters) == 1:
specs = [[{}], [{}]]
cols = 1
elif len(counters) == 2:
specs = [[{"colspan": 2}, None]] + [[{}, {}]] * (rows + 1)
cols = 2
counters.sort()
counter_titles = ["Label Counts by Type: " + ct.split("_")[0] for ct in counters]
titles = ("token length",) + tuple(counter_titles)
# Make figure with subplots
fig = make_subplots(
rows=rows + 2,
cols=cols,
subplot_titles=titles,
specs=specs,
vertical_spacing=0.10,
horizontal_spacing=0.10,
)
# draw token distribution
if "token_length" in tok_hist_data.keys():
draw_box(tok_hist_data, "token_length", row=1, col=1, fig=fig)
for i, ct in enumerate(counters):
row = i // 3 + 2
col = i % 3 + 1
label_df = parse_label_counter(metadata_helper, ct)
label_min = int(label_df[ct].min())
# filter_value = int((label_max - label_min) * 0.01 + label_min)
label_df = label_df[label_df[ct] >= label_min]
print(label_df.head(5))
# draw bar chart for counter
draw_bar(label_df, ct, "labels", row=row, col=col, fig=fig)
fig.update_annotations(font_size=12)
fig.update_layout(
margin=dict(l=25, r=25, t=25, b=25, pad=2),
# showlegend=False,
# title_text=data_name,
height=600,
width=1000,
)
# fig.show()
fig_name = f"{data_name}_{data_config_name}.pdf"
fig_path = f"figures/data_card/{fig_name}"
fig.write_image(fig_path)
dataset.cleanup_cache_files()
return helper, splits, fig_path
if __name__ == "__main__":
# load helpers
# each entry in local metadata is the dataset name
dc_local = load_helper(local="scripts/bigbio-public-metadatas-6-8.json")
# each entry is the config
conhelps = load_helper()
dc = list()
# TODO uncomment this
# for conhelper in conhelps:
# # print(f"{conhelper.dataset_name}-{conhelper.config.subset_id}-{conhelper.config.schema}")
# dc.append(conhelper.dataset_name)
# datacard per data, metadata chart per config
# for data_name, meta in dc_local.items():
# config_metas = meta['config_metas']
# config_metas_keys = config_metas.keys()
# if len(config_metas_keys) > 1:
# print(f'dataset {data_name} has more than one config')
# schemas = set()
# for config_name, config in config_metas.items():
# bigbio_schema = config['bigbio_schema']
# helper, splits, fig_path = draw_figure(data_name, config_name, bigbio_schema)
# schemas.add(helper.bigbio_schema_caps)
# latex_bod = gen_latex(data_name, helper, splits, schemas, fig_path)
# latex_name = f"{data_name}_{config_name}.tex"
# write_latex(latex_bod, latex_name)
# print(latex_bod)
# TODO try this code first, then use this for the whole loop
# skipped medal, too large, no nagel/pcr/pubtator_central/spl_adr_200db in local
data_name = sys.argv[1]
schemas = set()
# LOCAL
# meta = dc_local[data_name]
# config_metas = meta['config_metas']
# config_metas_keys = config_metas.keys()
# if len(config_metas_keys) >= 1:
# print(f'dataset {data_name} has more than one config')
# for config_name, config in config_metas.items():
# bigbio_schema = config['bigbio_schema']
# helper, splits, fig_path = draw_figure(data_name, config_name, bigbio_schema)
# schemas.add(helper.bigbio_schema_caps)
# latex_bod = gen_latex(data_name, helper, splits, schemas, fig_path)
# latex_name = f"{data_name}_{config_name}.tex"
# write_latex(latex_bod, latex_name)
# print(latex_bod)
# NON LOCAL
config_helpers = conhelps.for_dataset(data_name)
for config_helper in config_helpers:
rprint(config_helper)
bigbio_schema = config_helper.config.schema
config_name = config_helper.config.name
helper, splits, fig_path = draw_figure(data_name, config_name, bigbio_schema)
schemas.add(helper.bigbio_schema_caps)
latex_bod = gen_latex(data_name, helper, splits, schemas, fig_path)
latex_name = f"{data_name}_{config_name}.tex"
write_latex(latex_bod, latex_name)
print(latex_bod)
|