File size: 13,350 Bytes
50e5fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# from matplotlib_venn import venn2, venn3
import json

import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.io as pio
from datasets import load_dataset
from plotly.subplots import make_subplots
from rich import print as rprint

from collections import Counter

from ngram import get_tuples_manual_sentences

from bigbio.dataloader import BigBioConfigHelpers
import sys

pio.kaleido.scope.mathjax = None


# vanilla tokenizer
def tokenizer(text, counter):
    if not text:
        return text, []
    text = text.strip()
    text = text.replace("\t", "")
    text = text.replace("\n", "")
    # split
    text_list = text.split(" ")
    return text, text_list


def norm(lengths):
    mu = np.mean(lengths)
    sigma = np.std(lengths)
    return mu, sigma


def load_helper(local=""):
    if local != "":
        with open(local, "r") as file:
            conhelps = json.load(file)
    else:
        conhelps = BigBioConfigHelpers()
        conhelps = conhelps.filtered(lambda x: x.dataset_name != "pubtator_central")
        conhelps = conhelps.filtered(lambda x: x.is_bigbio_schema)
        conhelps = conhelps.filtered(lambda x: not x.is_local)
        rprint(
            "loaded {} configs from {} datasets".format(
                len(conhelps),
                len(set([helper.dataset_name for helper in conhelps])),
            )
        )
    return conhelps


_TEXT_MAPS = {
    "bigbio_kb": ["text"],
    "bigbio_text": ["text"],
    "bigbio_qa": ["question", "context"],
    "bigbio_te": ["premise", "hypothesis"],
    "bigbio_tp": ["text_1", "text_2"],
    "bigbio_pairs": ["text_1", "text_2"],
    "bigbio_t2t": ["text_1", "text_2"],
}

IBM_COLORS = [
    "#648fff",  # train
    "#dc267f",  # val
    "#ffb000",  # test
    "#fe6100",
    "#785ef0",
    "#000000",
    "#ffffff",
]

SPLIT_COLOR_MAP = {
    "train": "#648fff",
    "validation": "#dc267f",
    "test": "#ffb000",
}

N = 3


def token_length_per_entry(entry, schema, counter):
    result = {}
    entry_id = entry['id']
    if schema == "bigbio_kb":
        for passage in entry["passages"]:
            result_key = passage["type"]
            for key in _TEXT_MAPS[schema]:
                text = passage[key][0]
                if not text:
                    print(f"WARNING: text key does not exist: entry {entry_id}")
                    result["token_length"] = 0
                    result["text_type"] = result_key
                    continue
                sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
                toks = [tok for sent in sents for tok in sent]
                tups = ["_".join(tup) for tup in ngrams]
                counter.update(tups)
                result["token_length"] = len(toks)
                result["text_type"] = result_key
    else:
        for key in _TEXT_MAPS[schema]:
            text = entry[key]
            if not text:
                print(f"WARNING: text key does not exist, entry {entry_id}")
                result["token_length"] = 0
                result["text_type"] = key
                continue
            else:
                sents, ngrams = get_tuples_manual_sentences(text.lower(), N)
                toks = [tok for sent in sents for tok in sent]
                result["token_length"] = len(toks)
                result["text_type"] = key
                tups = ["_".join(tup) for tup in ngrams]
                counter.update(tups)
    return result, counter


def parse_token_length_and_n_gram(dataset, schema_type):
    hist_data = []
    n_gram_counters = []
    for split, data in dataset.items():
        n_gram_counter = Counter()
        for i, entry in enumerate(data):
            result, n_gram_counter = token_length_per_entry(
                entry, schema_type, n_gram_counter
            )
            result["split"] = split
            hist_data.append(result)
        n_gram_counters.append(n_gram_counter)

    return pd.DataFrame(hist_data), n_gram_counters


def resolve_splits(df_split):
    official_splits = set(df_split).intersection(set(SPLIT_COLOR_MAP.keys()))
    return official_splits


def draw_box(df, col_name, row, col, fig):
    splits = resolve_splits(df["split"].unique())
    for split in splits:
        split_count = df.loc[df["split"] == split, col_name].tolist()
        print(split)
        fig.add_trace(
            go.Box(
                x=split_count,
                name=split,
                marker_color=SPLIT_COLOR_MAP[split.split("_")[0]],
            ),
            row=row,
            col=col,
        )


def draw_bar(df, col_name, y_name, row, col, fig):
    splits = resolve_splits(df["split"].unique())
    for split in splits:
        split_count = df.loc[df["split"] == split, col_name].tolist()
        y_list = df.loc[df["split"] == split, y_name].tolist()
        fig.add_trace(
            go.Bar(
                x=split_count,
                y=y_list,
                name=split,
                marker_color=SPLIT_COLOR_MAP[split.split("_")[0]],
                showlegend=False,
            ),
            row=row,
            col=col,
        )
    fig.update_traces(orientation="h")  # horizontal box plots


def parse_counters(metadata):
    metadata = metadata[
        list(metadata.keys())[0]
    ]  # using the training counter to fetch the names
    counters = []
    for k, v in metadata.__dict__.items():
        if "counter" in k and len(v) > 0:
            counters.append(k)
    return counters


# generate the df for histogram
def parse_label_counter(metadata, counter_type):
    hist_data = []
    for split, m in metadata.items():
        metadata_counter = getattr(m, counter_type)
        for k, v in metadata_counter.items():
            row = {}
            row["labels"] = k
            row[counter_type] = v
            row["split"] = split
            hist_data.append(row)
    return pd.DataFrame(hist_data)


def gen_latex(dataset_name, helper, splits, schemas, fig_path):
    if type(helper.description) is dict:
        # TODO hacky, change this to include all decsriptions
        descriptions = helper.description[list(helper.description.keys())[0]]
    else:
        descriptions = helper.description
    descriptions = descriptions.replace("\n", "").replace("\t", "")
    langs = [l.value for l in helper.languages]
    languages = " ".join(langs)
    if type(helper.license) is dict:
        license = helper.license.value.name
    else:
        license = helper.license.name
    tasks = [" ".join(t.name.lower().split("_")) for t in helper.tasks]
    tasks = ", ".join(tasks)
    schemas = " ".join([r"{\tt "] + list(schemas) + ["}"])  # TODO \tt
    splits = ", ".join(list(splits))
    data_name_display = " ".join(data_name.split("_"))
    latex_bod = r"\clearpage" + "\n" + r"\section*{" + fr"{data_name_display}" + " Data Card" + r"}" + "\n"
    latex_bod += (
        r"\begin{figure}[ht!]"
        + "\n"
        + r"\centering"
        + "\n"
        + r"\includegraphics[width=\linewidth]{"
    )
    latex_bod += f"{fig_path}" + r"}" + "\n"
    latex_bod += r"\caption{\label{fig:"
    latex_bod += fr"{data_name}" + r"}"
    latex_bod += (
        r"Token frequency distribution by split (top) and frequency of different kind of instances (bottom).}"
        + "\n"
    )
    latex_bod += r"\end{figure}" + "\n" + r"\textbf{Dataset Description} "
    latex_bod += (
        fr"{descriptions}"
        + "\n"
        + r"\textbf{Homepage:} "
        + f"{helper.homepage}"
        + "\n"
        + r"\textbf{URL:} "
        + f"{helper.homepage}"  # TODO change this later
        + "\n"
        + r"\textbf{Licensing:} "
        + f"{license}"
        + "\n"
        + r"\textbf{Languages:} "
        + f"{languages}"
        + "\n"
        + r"\textbf{Tasks:} "
        + f"{tasks}"
        + "\n"
        + r"\textbf{Schemas:} "
        + f"{schemas}"
        + "\n"
        + r"\textbf{Splits:} "
        + f"{splits}"
    )
    return latex_bod


def write_latex(latex_body, latex_name):
    text_file = open(f"tex/{latex_name}", "w")
    text_file.write(latex_body)
    text_file.close()


def draw_figure(data_name, data_config_name, schema_type):
    helper = conhelps.for_config_name(data_config_name)
    metadata_helper = helper.get_metadata()  # calls load_dataset for meta parsing
    rprint(metadata_helper)
    splits = metadata_helper.keys()
    # calls HF load_dataset _again_ for token parsing
    dataset = load_dataset(
        f"bigbio/biodatasets/{data_name}/{data_name}.py", name=data_config_name
    )
    # general token length
    tok_hist_data, ngram_counters = parse_token_length_and_n_gram(dataset, schema_type)
    rprint(helper)

    # general counter(s)
    # TODO generate the pdf and fix latex

    counters = parse_counters(metadata_helper)
    print(counters)
    rows = len(counters) // 3
    if len(counters) >= 3:
        # counters = counters[:3]
        cols = 3
        specs = [[{"colspan": 3}, None, None]] + [[{}, {}, {}]] * (rows + 1)
    elif len(counters) == 1:
        specs = [[{}], [{}]]
        cols = 1
    elif len(counters) == 2:
        specs = [[{"colspan": 2}, None]] + [[{}, {}]] * (rows + 1)
        cols = 2
    counters.sort()

    counter_titles = ["Label Counts by Type: " + ct.split("_")[0] for ct in counters]
    titles = ("token length",) + tuple(counter_titles)
    # Make figure with subplots
    fig = make_subplots(
        rows=rows + 2,
        cols=cols,
        subplot_titles=titles,
        specs=specs,
        vertical_spacing=0.10,
        horizontal_spacing=0.10,
    )
    # draw token distribution
    if "token_length" in tok_hist_data.keys():
        draw_box(tok_hist_data, "token_length", row=1, col=1, fig=fig)
    for i, ct in enumerate(counters):
        row = i // 3 + 2
        col = i % 3 + 1
        label_df = parse_label_counter(metadata_helper, ct)
        label_min = int(label_df[ct].min())
        # filter_value = int((label_max - label_min) * 0.01 + label_min)
        label_df = label_df[label_df[ct] >= label_min]
        print(label_df.head(5))

        # draw bar chart for counter
        draw_bar(label_df, ct, "labels", row=row, col=col, fig=fig)

    fig.update_annotations(font_size=12)
    fig.update_layout(
        margin=dict(l=25, r=25, t=25, b=25, pad=2),
        # showlegend=False,
        # title_text=data_name,
        height=600,
        width=1000,
    )

    # fig.show()
    fig_name = f"{data_name}_{data_config_name}.pdf"

    fig_path = f"figures/data_card/{fig_name}"
    fig.write_image(fig_path)
    dataset.cleanup_cache_files()

    return helper, splits, fig_path


if __name__ == "__main__":
    # load helpers
    # each entry in local metadata is the dataset name
    dc_local = load_helper(local="scripts/bigbio-public-metadatas-6-8.json")
    # each entry is the config
    conhelps = load_helper()
    dc = list()
    # TODO uncomment this
    # for conhelper in conhelps:
    #     # print(f"{conhelper.dataset_name}-{conhelper.config.subset_id}-{conhelper.config.schema}")
    #     dc.append(conhelper.dataset_name)

    # datacard per data, metadata chart per config
    # for data_name, meta in dc_local.items():
    #     config_metas = meta['config_metas']
    #     config_metas_keys = config_metas.keys()
    #     if len(config_metas_keys) > 1:
    #         print(f'dataset {data_name} has more than one config')
    #     schemas = set()
    #     for config_name, config in config_metas.items():
    #         bigbio_schema = config['bigbio_schema']
    #         helper, splits, fig_path = draw_figure(data_name, config_name, bigbio_schema)
    #         schemas.add(helper.bigbio_schema_caps)
    #         latex_bod = gen_latex(data_name, helper, splits, schemas, fig_path)
    #         latex_name = f"{data_name}_{config_name}.tex"
    #         write_latex(latex_bod, latex_name)
    #         print(latex_bod)

    # TODO try this code first, then use this for the whole loop
    # skipped medal, too large, no nagel/pcr/pubtator_central/spl_adr_200db in local
    data_name = sys.argv[1]
    schemas = set()
    # LOCAL
    # meta = dc_local[data_name]
    # config_metas = meta['config_metas']
    # config_metas_keys = config_metas.keys()
    # if len(config_metas_keys) >= 1:
    #     print(f'dataset {data_name} has more than one config')
    # for config_name, config in config_metas.items():
    #     bigbio_schema = config['bigbio_schema']
    #     helper, splits, fig_path = draw_figure(data_name, config_name, bigbio_schema)
    #     schemas.add(helper.bigbio_schema_caps)
    #     latex_bod = gen_latex(data_name, helper, splits, schemas, fig_path)
    #     latex_name = f"{data_name}_{config_name}.tex"
    #     write_latex(latex_bod, latex_name)
    #     print(latex_bod)
    # NON LOCAL
    config_helpers = conhelps.for_dataset(data_name)
    for config_helper in config_helpers:
        rprint(config_helper)
        bigbio_schema = config_helper.config.schema
        config_name = config_helper.config.name
        helper, splits, fig_path = draw_figure(data_name, config_name, bigbio_schema)
        schemas.add(helper.bigbio_schema_caps)
        latex_bod = gen_latex(data_name, helper, splits, schemas, fig_path)
        latex_name = f"{data_name}_{config_name}.tex"
        write_latex(latex_bod, latex_name)
        print(latex_bod)