File size: 8,838 Bytes
4e99679 11bad2f 4e99679 cd3faf5 85e4a6b cd3faf5 4e99679 11bad2f 4e99679 11bad2f 4e99679 11bad2f 4e99679 11bad2f 4e99679 11bad2f 4e99679 11bad2f 4e99679 11bad2f 4e99679 11bad2f 4e99679 11bad2f 4e99679 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import gradio as gr
import pandas as pd
import json
import os
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
from datetime import datetime, timezone
from pathlib import Path
from request_api import make_get_request, make_post_request
from io import BytesIO, StringIO
LEADERBOARD_PATH = "/home/Bhattacharya/ism_leaderboard/files/leaderboard"
# Directory where request by models are stored
DIR_OUTPUT_REQUESTS = Path("requested_models")
EVAL_REQUESTS_PATH = Path("eval_requests")
##########################
# Text definitions #
##########################
banner_url = "https://huggingface.co/spaces/debayan/ism_2023w/resolve/main/logo_leaderboard.png"
BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>'
TITLE = "<html> <head> <style> h1 {text-align: center;} </style> </head> <body> <h1> π€ Open Automatic Speech Recognition Leaderboard </b> </body> </html>"
INTRODUCTION_TEXT = "π The ISM2023w Leaderboard ranks and evaluates models \
on the Hugging Face Spaces. \
\nWe report the Precision, Recall, Accuracy, Weighted [F1 Score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html)\n"
#CSV_TEXT = "<p>Please make sure that you upload the CSV in the correct format. Click the link to download a sample CSV!</p> <a href=\"https://huggingface.co/spaces/debayan/ism_2023w/raw/main/example.csv\" download=\"example.csv\">Download CSV</a>"
CSV_TEXT = "<p>Please use this link to upload your csvs and check leaderboards!</p> <a href=\"https://a37fcb50ccc3b4a060.gradio.live\" >https://a37fcb50ccc3b4a060.gradio.live</a>"
METRICS_TAB_TEXT = """
Here you will find details about the multi-class classification metrics and datasets reported in our leaderboard.
## Metrics
π― Word Error Rate (WER) and Real-Time Factor (RTF) are popular metrics for evaluating the accuracy of speech recognition
models by estimating how accurate the predictions from the models are and how fast they are returned. We explain them each
below.
"""
LAST_UPDATED = "Sep 28th 2023"
def create_html_page(title, content):
html_page = f"""
<html>
<head>
<title>{title}</title>
</head>
<body>
{content}
</body>
</html>
"""
return html_page
def fetch_leaderboard(phase=1):
"""
Fetch the leaderboard from the local disk
"""
params = {"phase": phase}
leaderboard_df = make_get_request("fetch-leaderboard", params)
csv_data = leaderboard_df.content.decode('utf-8')
print(csv_data)
# create dataframe from csv data
leaderboard_df = pd.read_csv(StringIO(csv_data))
leaderboard_df = leaderboard_df.dropna()
return leaderboard_df
def process_csv_text(temp_file):
if isinstance(temp_file, str):
df = pd.read_csv(StringIO(temp_file))
else:
try:
df = pd.read_csv(temp_file.name)
except:
return None
return df
def app(team_name, password, csv_file):
# convert csv_file from bytes to file
# Check if the team is registered
# make get request to get team name from password
returned_team_name_json = make_get_request("get-team-name", {"password": password}).json()
# handle error by checking if the returned json has an error key
if "error" in returned_team_name_json:
return create_html_page("Error", "Invalid team name or password.")
else:
returned_team_name = returned_team_name_json["team_name"]
if team_name != returned_team_name:
return create_html_page("Error", "Invalid team name or password.")
else:
print("team name and password are correct")
# convert csv_file from bytes to file
# read csv file as dataframe
#df = pd.read_csv(csv_file.name,encoding='utf-8')
# convert tempfile to bytes
df = process_csv_text(csv_file)
if df is None:
return create_html_page("Error", "Invalid CSV file format.")
csv_data = df.to_csv(index=False)
# upload csv file to the server
upload_csv_response = make_post_request("upload", {"password": password}, data = csv_data)
# handle error by checking if the returned json has an error key
if "error" in upload_csv_response.json():
return create_html_page("Error", upload_csv_response.json()["error"] )
else:
return create_html_page("Success", upload_csv_response.json()["message"])
def formatter(x):
x = round(x, 2)
return x
def format_leaderboard(df,sort_by="F1 Score"):
# Formats the columns
for col in df.columns:
if col == "Team Name":
# do nothing
continue
elif col == "Team Members":
# do nothing
continue
else:
#if col type if numeric then format it else leave it as it is
if df[col].dtype == "float64" or df[col].dtype == "int64":
df[col] = df[col].apply(formatter) # For numerical values
df.sort_values(by=sort_by, inplace=True, ascending=False)
return df
#leaderboard_df_1 = format_leaderboard(fetch_leaderboard(phase=1))
#leaderboard_df_2 = format_leaderboard(fetch_leaderboard(phase=2))
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
with gr.Blocks() as demo:
leaderboard_table_1 = None
leaderboard_table_2 = None
def button_clicked_phase_1(inputs):
leaderboard_df_1 = format_leaderboard(fetch_leaderboard(phase=1))
leaderboard_table_1 = gr.components.Dataframe(
value=leaderboard_df_1,
datatype=TYPES,
max_rows=None,
elem_id="leaderboard-table-1",
interactive=False,
visible=True,
)
return leaderboard_table_1
def button_clicked_phase_2():
leaderboard_df_2 = format_leaderboard(fetch_leaderboard(phase=2))
leaderboard_table_2 = gr.components.Dataframe(
value=leaderboard_df_2,
datatype=TYPES,
max_rows=None,
elem_id="leaderboard-table-2",
interactive=False,
visible=True,
)
return leaderboard_table_2
#outputs.update(leaderboard_df_2)
#inputs.value = leaderboard_df_1
gr.HTML(BANNER, elem_id="banner")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
gr.HTML(CSV_TEXT, elem_classes="markdown-text")
"""
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard Phase 1", elem_id="od-benchmark-tab-table-1", id=0):
leaderboard_table_1 = gr.components.Dataframe(
value=leaderboard_df_1,
datatype=TYPES,
max_rows=None,
elem_id="leaderboard-table-1",
interactive=False,
visible=True,
)
button = gr.Button("Refresh Leaderboard",interactive=True)
button.click(fn=button_clicked_phase_1,outputs=[leaderboard_table_1])
with gr.TabItem("π
Leaderboard Phase 2", elem_id="od-benchmark-tab-table-2", id=1):
leaderboard_table_2 = gr.components.Dataframe(
value=leaderboard_df_2,
datatype=TYPES,
max_rows=None,
elem_id="leaderboard-table-2",
interactive=False,
visible=True,
)
button = gr.Button("Refresh Leaderboard",interactive=True)
button.click(fn=button_clicked_phase_2,outputs=[leaderboard_table_2])
with gr.TabItem("π Upload CSV", elem_id="od-benchmark-tab-table", id=2):
gr.Interface(
fn=app,
title='CSV Upload and Leaderboard',
description='Upload a CSV file and see your team\'s rank on the leaderboard.',
layout='vertical',
theme='compact',
inputs=[
gr.Textbox(label='Team Name'),
gr.Textbox(label='Password'),
gr.File(file_count= "single", file_types =[".txt",".csv"] ,label='CSV File') # only allow csv files
],
outputs=gr.outputs.HTML()
)
"""
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
demo.launch(debug=True,share=True)
|